跳至主要內容

CyletixGPT-4大约 2 分钟

定义和基本概念

设有一个多变量复合函数 z=f(x,y)z = f(x, y),其中 xxyy 又是其他变量 uuvv 的函数,即 x=g(u,v)x = g(u, v)y=h(u,v)y = h(u, v)。我们想找到 zzuuvv 的偏导数 zu\frac{\partial z}{\partial u}zv\frac{\partial z}{\partial v}

链式法则

通过已知的偏导数,找到复合函数的偏导数

zu=zxxu+zyyu \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}

zv=zxxv+zyyv \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}

这种方法可以推广到任意数量的变量

示例

+

假设有函数 z=f(x,y)=x2+y2z = f(x, y) = x^2 + y^2,其中 x=g(u,v)=u2vx = g(u, v) = u^2 - vy=h(u,v)=uvy = h(u, v) = uv,我们来求 zzuuvv 的偏导数。

  1. 计算 zzxxyy 的偏导数:

zx=x(x2+y2)=2x \frac{\partial z}{\partial x} = \frac{\partial}{\partial x}(x^2 + y^2) = 2x

zy=y(x2+y2)=2y \frac{\partial z}{\partial y} = \frac{\partial}{\partial y}(x^2 + y^2) = 2y

  1. 计算 xxyyuuvv 的偏导数:

xu=u(u2v)=2u \frac{\partial x}{\partial u} = \frac{\partial}{\partial u}(u^2 - v) = 2u

xv=v(u2v)=1 \frac{\partial x}{\partial v} = \frac{\partial}{\partial v}(u^2 - v) = -1

yu=u(uv)=v \frac{\partial y}{\partial u} = \frac{\partial}{\partial u}(uv) = v

yv=v(uv)=u \frac{\partial y}{\partial v} = \frac{\partial}{\partial v}(uv) = u

  1. 代入链式法则公式:

zu=zxxu+zyyu \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}

将已知偏导数代入,得到:

zu=2x2u+2yv \frac{\partial z}{\partial u} = 2x \cdot 2u + 2y \cdot v

因为 x=u2vx = u^2 - vy=uvy = uv,所以:

zu=2(u2v)2u+2(uv)v=4u(u2v)+2uv2 \frac{\partial z}{\partial u} = 2(u^2 - v) \cdot 2u + 2(uv) \cdot v = 4u(u^2 - v) + 2uv^2

zv=zxxv+zyyv \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}

将已知偏导数代入,得到:

zv=2x(1)+2yu \frac{\partial z}{\partial v} = 2x \cdot (-1) + 2y \cdot u

因为 x=u2vx = u^2 - vy=uvy = uv,所以:

zv=2(u2v)(1)+2(uv)u=2(u2v)+2u2v \frac{\partial z}{\partial v} = 2(u^2 - v) \cdot (-1) + 2(uv) \cdot u = -2(u^2 - v) + 2u^2v

综上所述,复合函数 z=f(x,y)=x2+y2z = f(x, y) = x^2 + y^2uuvv 的偏导数分别为:

zu=4u(u2v)+2uv2 \frac{\partial z}{\partial u} = 4u(u^2 - v) + 2uv^2

zv=2(u2v)+2u2v \frac{\partial z}{\partial v} = -2(u^2 - v) + 2u^2v