跳至主要內容

Cyletix大约 1 分钟

幂指函数

kdx=kx+C \int k dx = kx + C

\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$$$\int \frac{1}{x} dx = \ln|x| + C

exdx=ex+C \int e^x dx = e^x + C

axdx=axlna+C(a>0,a1) \int a^x dx = \frac{a^x}{\ln a} + C \quad (a > 0, a \neq 1)

三角函数

sinxdx=cosx+C \int \sin x dx = -\cos x + C

cosxdx=sinx+C \int \cos x dx = \sin x + C

tanxdx=lncosx+C \int \tan x dx = -\ln|\cos x| + C

cotxdx=lnsinx+C \int \cot x dx = \ln|\sin x| + C

secxdx=lnsecx+tanx+C \int \sec x dx = \ln|\sec x + \tan x| + C

cscxdx=lncscxcotx+C \int \csc x dx = \ln|\csc x - \cot x| + C

sec2xdx=tanx+C \int \sec^2 x dx = \tan x + C

csc2xdx=cotx+C \int \csc^2 x dx = -\cot x + C

1sin2xdx=cotx+C \int \frac{1}{\sin^2 x} dx = -\cot x + C

11sinxdx=ln1sinxcosx+C \int \frac{1}{1 - \sin x} dx = -\ln|1 - \sin x - \cos x| + C

反三角函数

11x2dx=arcsinx+C \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C

1a2x2dx=arcsinxa+C(a>0) \int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C \quad (a > 0)

11x2dx=arccosx+C \int -\frac{1}{\sqrt{1-x^2}} dx = \arccos x + C

11+x2dx=arctanx+C \int \frac{1}{1+x^2} dx = \arctan x + C

1x2+1dx=arccotx+C \int -\frac{1}{x^2+1} dx = \text{arccot} \, x + C

1xx21dx=arcsecx+C \int \frac{1}{x\sqrt{x^2-1}} dx = \text{arcsec} \, x + C

1xx21dx=arccscx+C \int -\frac{1}{x\sqrt{x^2-1}} dx = \text{arccsc} \, x + C

反双曲函数

1x2+a2dx=lnx+x2+a2+C=arcsinh(xa)+C \int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln|x + \sqrt{x^2 + a^2}| + C = \text{arcsinh}\left(\frac{x}{a}\right) + C

1x2a2dx=lnx+x2a2+C=arccosh(xa)+C \int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln|x + \sqrt{x^2 - a^2}| + C = \text{arccosh}\left(\frac{x}{a}\right) + C

11x2dx=12ln1+x1x+C=arctanh(x)+C(x<1) \int \frac{1}{1 - x^2} \, dx = \frac{1}{2} \ln\left|\frac{1 + x}{1 - x}\right| + C = \text{arctanh}(x) + C \quad (|x| < 1)

1x21dx=12lnx1x+1+C=arccoth(x)+C(x>1) \int \frac{1}{x^2 - 1} \, dx = \frac{1}{2} \ln\left|\frac{x - 1}{x + 1}\right| + C = \text{arccoth}(x) + C \quad (|x| > 1)

1x1x2dx=lnx+x21+C=arcsech(x)+C(0<x<1) \int \frac{1}{x \sqrt{1 - x^2}} \, dx = -\ln\left|x + \sqrt{x^2 - 1}\right| + C = \text{arcsech}(x) + C \quad (0 < x < 1)

1x1+x2dx=lnx+x2+1+C=arccsch(x)+C \int \frac{1}{|x| \sqrt{1 + x^2}} \, dx = \ln\left|x + \sqrt{x^2 + 1}\right| + C = \text{arccsch}(x) + C


反圆锥曲线函数与对数函数的统一 反圆锥曲线函数与对数函数的统一