∫a2−x21dx | arcsinax+C | −iln(ix+a2−x2)+C | x≤a | [−2π,2π] |
∫−a2−x21dx | arccosax+C | −iln(x+ia2−x2)+C | x≤a | [0,π] |
∫1+x21dx | arctanx+C | 2iln(1+ix1−ix)+C | x∈R | (−2π,2π) |
∫−1+x21dx | arccotx+C | 2iln(x+ix−i)+C | x∈R | (0,π) |
∫xx2−a21dx | arcsecax+C | iln(ax+a2x2−1)+C | x≥a | [0,π]∖2π |
∫−xx2−a21dx | arccscax+C | iln(x1+x21−a21)+C | x≥a | [−2π,2π]∖0 |
∫x2+a21dx | arsinhax+C | ln(x+x2+a2)+C | x∈R | x∈R |
∫x2−a21dx | arcoshax+C | ln(x+x2−a2)+C | x≥a | [0,∞) |
∫1−x21dx | arctanhx+C | 21ln(1−x1+x)+C | x<1 | (−∞,∞) |
∫−1−x21dx | arccothx+C | 21ln(x−1x+1)+C | x>1 | (0,∞) |
∫x1−x21dx | arcsechx+C | −ln(x+x2−1)+C | 0<x≤1 | (0,2π] |
∫−x1+x21dx | arccschx+C | ln(x+x2+1)+C | x∈R∖0 | (−∞,∞) |