含参重积分表示带有参数α\alphaα的函数在某个区域VVV内的积分:
I(α)=∭Vf(x,y,z;α) dV I(\alpha) = \iiint_V f(x, y, z; \alpha) \, dV I(α)=∭Vf(x,y,z;α)dV
其中:
如果积分表达式依赖于参数α\alphaα,其导数可通过对被积函数的α\alphaα偏导得到:
dIdα=∭V∂f(x,y,z;α)∂α dV \frac{dI}{d\alpha} = \iiint_V \frac{\partial f(x, y, z; \alpha)}{\partial \alpha} \, dV dαdI=∭V∂α∂f(x,y,z;α)dV
使用变量替换将积分区域VVV变换为V′V'V′时,引入雅可比行列式∣J∣|J|∣J∣:
I(α)=∭V′f(u(x,y,z),v(x,y,z),w(x,y,z);α) ∣J∣ dV′ I(\alpha) = \iiint_{V'} f(u(x, y, z), v(x, y, z), w(x, y, z); \alpha) \, |J| \, dV' I(α)=∭V′f(u(x,y,z),v(x,y,z),w(x,y,z);α)∣J∣dV′