sin(α)+sin(β)=2sinα+β2cosα−β2 \sin(\alpha)+\sin(\beta)=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} sin(α)+sin(β)=2sin2α+βcos2α−β
sin(α)−sin(β)=2sinα+β2cosα−β2 \sin(\alpha)-\sin(\beta)=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} sin(α)−sin(β)=2sin2α+βcos2α−β