跳至主要內容

PKM-er大约 2 分钟

三倍角公式是用于表示三倍角的正弦和余弦函数的公式。具体来说,三倍角公式如下:

sin(3θ)=3sin(θ)4sin3(θ) \sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta)

cos(3θ)=4cos3(θ)3cos(θ) \cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta)

下面是这些公式的推导过程。

1. 推导 sin(3θ)\sin(3\theta)

首先,使用 sin(a+b)\sin(a + b) 的和角公式:

sin(a+b)=sin(a)cos(b)+cos(a)sin(b) \sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b)

a=2θa = 2\thetab=θb = \theta,则:

sin(3θ)=sin(2θ+θ)=sin(2θ)cos(θ)+cos(2θ)sin(θ) \sin(3\theta) = \sin(2\theta + \theta) = \sin(2\theta)\cos(\theta) + \cos(2\theta)\sin(\theta)

使用二倍角公式 sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta)cos(2θ)=cos2(θ)sin2(θ)\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta),代入上式:

sin(3θ)=(2sin(θ)cos(θ))cos(θ)+(cos2(θ)sin2(θ))sin(θ) \sin(3\theta) = (2\sin(\theta)\cos(\theta))\cos(\theta) + (\cos^2(\theta) - \sin^2(\theta))\sin(\theta)

展开并化简:

sin(3θ)=2sin(θ)cos2(θ)+cos2(θ)sin(θ)sin3(θ) \sin(3\theta) = 2\sin(\theta)\cos^2(\theta) + \cos^2(\theta)\sin(\theta) - \sin^3(\theta)

=3sin(θ)cos2(θ)sin3(θ) = 3\sin(\theta)\cos^2(\theta) - \sin^3(\theta)

使用 cos2(θ)=1sin2(θ)\cos^2(\theta) = 1 - \sin^2(\theta),代入化简:

sin(3θ)=3sin(θ)(1sin2(θ))sin3(θ) \sin(3\theta) = 3\sin(\theta)(1 - \sin^2(\theta)) - \sin^3(\theta)

=3sin(θ)3sin3(θ)sin3(θ) = 3\sin(\theta) - 3\sin^3(\theta) - \sin^3(\theta)

=3sin(θ)4sin3(θ) = 3\sin(\theta) - 4\sin^3(\theta)

所以,sin(3θ)\sin(3\theta) 的三倍角公式为:

sin(3θ)=3sin(θ)4sin3(θ) \sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta)

2. 推导 cos(3θ)\cos(3\theta)

首先,使用 cos(a+b)\cos(a + b) 的和角公式:

cos(a+b)=cos(a)cos(b)sin(a)sin(b) \cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b)

a=2θa = 2\thetab=θb = \theta,则:

cos(3θ)=cos(2θ+θ)=cos(2θ)cos(θ)sin(2θ)sin(θ) \cos(3\theta) = \cos(2\theta + \theta) = \cos(2\theta)\cos(\theta) - \sin(2\theta)\sin(\theta)

使用二倍角公式 sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta)cos(2θ)=cos2(θ)sin2(θ)\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta),代入上式:

cos(3θ)=(cos2(θ)sin2(θ))cos(θ)(2sin(θ)cos(θ))sin(θ) \cos(3\theta) = (\cos^2(\theta) - \sin^2(\theta))\cos(\theta) - (2\sin(\theta)\cos(\theta))\sin(\theta)

展开并化简:

cos(3θ)=cos3(θ)cos(θ)sin2(θ)2sin2(θ)cos(θ) \cos(3\theta) = \cos^3(\theta) - \cos(\theta)\sin^2(\theta) - 2\sin^2(\theta)\cos(\theta)

=cos3(θ)3sin2(θ)cos(θ) = \cos^3(\theta) - 3\sin^2(\theta)\cos(\theta)

使用 sin2(θ)=1cos2(θ)\sin^2(\theta) = 1 - \cos^2(\theta),代入化简:

cos(3θ)=cos3(θ)3(1cos2(θ))cos(θ) \cos(3\theta) = \cos^3(\theta) - 3(1 - \cos^2(\theta))\cos(\theta)

=cos3(θ)3cos(θ)+3cos3(θ) = \cos^3(\theta) - 3\cos(\theta) + 3\cos^3(\theta)

=4cos3(θ)3cos(θ) = 4\cos^3(\theta) - 3\cos(\theta)

所以,cos(3θ)\cos(3\theta) 的三倍角公式为:

cos(3θ)=4cos3(θ)3cos(θ) \cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta)