跳至主要內容

CyletixGPT-4小于 1 分钟

ex=1+x+x22!+x33!+x44!++xnn!+ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots + \frac{x^n}{n!} + \cdots

sin(x)=xx33!+x55!x77!++(1)nx2n+1(2n+1)!+ \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \cdots

cos(x)=1x22!+x44!x66!++(1)nx2n(2n)!+ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots + (-1)^n \frac{x^{2n}}{(2n)!} + \cdots

ln(1+x)=xx22+x33x44++(1)n+1xnn+ \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots + (-1)^{n+1} \frac{x^n}{n} + \cdots

sinh(x)=x+x33!+x55!+x77!++x2n+1(2n+1)!+ \sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots + \frac{x^{2n+1}}{(2n+1)!} + \cdots

cosh(x)=1+x22!+x44!+x66!++x2n(2n)!+ \cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots + \frac{x^{2n}}{(2n)!} + \cdots

arctan(x)=xx33+x55x77++(1)nx2n+12n+1+ \arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots + (-1)^n \frac{x^{2n+1}}{2n+1} + \cdots

f(x)=xr=n=0f(n)(0)n!xn f(x) = x^r = \sum_{n=0}^\infty \frac{f^{(n)}(0)}{n!}x^n