ex=1+x+2!x2+3!x3+4!x4+⋯+n!xn+⋯
sin(x)=x−3!x3+5!x5−7!x7+⋯+(−1)n(2n+1)!x2n+1+⋯
cos(x)=1−2!x2+4!x4−6!x6+⋯+(−1)n(2n)!x2n+⋯
ln(1+x)=x−2x2+3x3−4x4+⋯+(−1)n+1nxn+⋯
sinh(x)=x+3!x3+5!x5+7!x7+⋯+(2n+1)!x2n+1+⋯
cosh(x)=1+2!x2+4!x4+6!x6+⋯+(2n)!x2n+⋯
arctan(x)=x−3x3+5x5−7x7+⋯+(−1)n2n+1x2n+1+⋯
f(x)=xr=n=0∑∞n!f(n)(0)xn