ddx(f(x)g(x))=f′(x)g(x)−f(x)g′(x)[g(x)]2 \frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} dxd(g(x)f(x))=[g(x)]2f′(x)g(x)−f(x)g′(x)