跳至主要內容

Cyletix小于 1 分钟

幂指函数

其中 aa, cc, nn 都是常数:

ddx(c)=0 \frac{d}{dx} (c) = 0

ddx(xn)=nxn1 \frac{d}{dx} (x^n) = nx^{n-1}

ddx(ax)=axln(a),(a>0) \frac{d}{dx} (a^x) = a^x \ln(a),(a > 0)

ddx(logax)=1xln(a),其中(a>0,a1) \frac{d}{dx} (\log_a x) = \frac{1}{x \ln(a)},其中(a > 0, a \neq 1)

三角函数

ddx(sin(x))=cos(x) \frac{d}{dx}(\sin(x)) = \cos(x)

ddx(cos(x))=sin(x) \frac{d}{dx}(\cos(x)) = -\sin(x)

ddx(tan(x))=sec2(x) \frac{d}{dx}(\tan(x)) = \sec^2(x)

ddx(cot(x))=csc2(x) \frac{d}{dx}(\cot(x)) = -\csc^2(x)

ddx(sec(x))=sec(x)tan(x) \frac{d}{dx}(\sec(x)) = \sec(x) \tan(x)

ddx(csc(x))=csc(x)cot(x) \frac{d}{dx}(\csc(x)) = -\csc(x) \cot(x)

反三角函数

ddx(arcsin(x))=11x2 \frac{d}{dx}(\arcsin(x)) = \frac{1}{\sqrt{1-x^2}}

ddx(arccos(x))=11x2 \frac{d}{dx}(\arccos(x)) = -\frac{1}{\sqrt{1-x^2}}

ddx(arctan(x))=11+x2 \frac{d}{dx}(\arctan(x)) = \frac{1}{1+x^2}

ddx(arccot(x))=11+x2 \frac{d}{dx}(arccot(x)) = -\frac{1}{1+x^2}

ddx(arcsec(x))=1xx21 \frac{d}{dx}(arcsec(x)) = \frac{1}{|x|\sqrt{x^2-1}}

ddx(arccsc(x))=1xx21 \frac{d}{dx}(arccsc(x)) = -\frac{1}{|x|\sqrt{x^2-1}}

导数间的运算法则

线性乘法定则除法定则链式法则