一、选择题 (本题共 10 小题, 每小题 5 分, 共 50 分. 在每小题给出的四个选项中, 只有一项符合题目 要求,把所选项前的字母填在题后的括号内. )
(1) 数一2021 函数 f ( x ) = { e x − 1 x , x ≠ 0 , 1 , x = 0 \displaystyle f(x)=\left\{\begin{array}{ll}\frac{\mathrm{e}^{x}-1}{x}, & x \neq 0, \\ 1, & x=0\end{array}\right. f ( x ) = { x e x − 1  , 1 ,  x  = 0 , x = 0    在 x = 0 x=0 x = 0   处 ( )  (A) 连续且取极大值.(B) 连续且取极小值.(C) 可导且导数等于 0 .(D) 可导且导数不为 0 .
(1) 数一2021 答 应选 D. 思路 这道题先使用导数的定义, 在连续使用两次洛必达求得求得极限  因为 f ′ ( 0 ) = 导数定义 lim  x → 0 f ( x ) − f ( 0 ) x = f ( 0 ) = 1 f ( x ) = e x − 1 x lim  x → 0 e x − 1 x − x x \displaystyle f'(0) \xlongequal[]{\text{导数定义}}\lim_{x \to 0} \frac{f(x) - f(0)}{x} \xlongequal[f(0)=1]{f(x)=\frac{e^{x}-1}{x}}\lim_{x \to 0} \frac{\frac{e^x - 1}{x} - x}{x} f ′ ( 0 ) 导数定义  x → 0 lim  x f ( x ) − f ( 0 )  f ( x ) = x e x − 1  f ( 0 ) = 1  x → 0 lim  x x e x − 1  − x  = 通分 lim  x → 0 e x − 1 − x x 2 = 或洛必达 泰勒 lim  x → 0 1 2 x 2 = 1 2 \displaystyle \xlongequal[]{\text{通分}}\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} \xlongequal[\text{或洛必达}]{\text{泰勒}}\lim_{x \to 0} \frac{1}{2}x^2 = \frac{1}{2} 通分  x → 0 lim  x 2 e x − 1 − x  泰勒 或洛必达  x → 0 lim  2 1  x 2 = 2 1   (2) 数一2021 设函数 f ( x , y ) f(x, y) f ( x , y )   可微, 且 f ( x + 1 , e x ) = x ( x + 1 ) 2 , f ( x , x 2 ) = 2 x 2 ln  x f\left(x+1, \mathrm{e}^{x}\right)=x(x+1)^{2}, f\left(x, x^{2}\right)=2 x^{2} \ln x f ( x + 1 , e x ) = x ( x + 1 ) 2 , f ( x , x 2 ) = 2 x 2 ln x  , 则 d f ( 1 , 1 ) = ( ) \mathrm{d} f(1,1)=(\quad) d f ( 1 , 1 ) = ( )   (A) d x + d y \mathrm{d} x+\mathrm{d} y d x + d y  .(B) d x − d y \mathrm{d} x-\mathrm{d} y d x − d y  .(C) d y \mathrm{d} y d y  .(D) − d y -\mathrm{d} y − d y  .
(2) 解 根据全微分的定义:d f ( 1 , 1 ) = f 1 ′ ( 1 , 1 ) d x + f 2 ′ ( 1 , 1 ) d y \mathrm{d} f(1,1)=f_1^{\prime}(1,1) \mathrm{d} x+f_2^{\prime}(1,1) \mathrm{d} y d f ( 1 , 1 ) = f 1 ′  ( 1 , 1 ) d x + f 2 ′  ( 1 , 1 ) d y  需要对 f ( x + 1 , e x ) = x ( x + 1 ) 2 f(x+1, \mathrm{e}^x) = x(x+1)^2 f ( x + 1 , e x ) = x ( x + 1 ) 2   和 f ( x , x 2 ) = 2 x 2 ln  x f(x, x^2) = 2x^2 \ln x f ( x , x 2 ) = 2 x 2 ln x   分别对 x x x   求导 对 f ( x + 1 , e x ) = x ( x + 1 ) 2 → 等式左右都对 x 求导 f(x+1, \mathrm{e}^x) = x(x+1)^2\xrightarrow[]{\text{等式左右都对}x\text{求导}} f ( x + 1 , e x ) = x ( x + 1 ) 2 等式左右都对 x 求导  f 1 ′ ( x + 1 , e x ) + f 2 ′ ( x + 1 , e x ) ⋅ e x = ( x + 1 ) 2 + 2 x ( x + 1 ) \displaystyle f_1'(x+1, \mathrm{e}^x) + f_2'(x+1, \mathrm{e}^x) \cdot \mathrm{e}^x = (x+1)^2 + 2x(x+1) f 1 ′  ( x + 1 , e x ) + f 2 ′  ( x + 1 , e x ) ⋅ e x = ( x + 1 ) 2 + 2 x ( x + 1 ) 代入 x = 0 x=0 x = 0   得到: f 1 ′ ( 1 , 1 ) + f 2 ′ ( 1 , 1 ) = 1 f_1'(1,1) + f_2'(1,1) = 1 f 1 ′  ( 1 , 1 ) + f 2 ′  ( 1 , 1 ) = 1   对 f ( x , x 2 ) = 2 x 2 ln  x → 等式左右都对 x 求导 f(x, x^2) = 2x^2 \ln x\xrightarrow[]{\text{等式左右都对}x\text{求导}} f ( x , x 2 ) = 2 x 2 ln x 等式左右都对 x 求导  f 1 ′ ( x , x 2 ) + 2 x ⋅ f 2 ′ ( x , x 2 ) = 4 x ln  x + 2 x \displaystyle f_1'(x, x^2) + 2x \cdot f_2'(x, x^2) = 4x \ln x + 2x f 1 ′  ( x , x 2 ) + 2 x ⋅ f 2 ′  ( x , x 2 ) = 4 x ln x + 2 x 代入 x = 1 x=1 x = 1   ,得到 f 1 ′ ( 1 , 1 ) + 2 f 2 ′ ( 1 , 1 ) = 2 f_1'(1,1) + 2f_2'(1,1) = 2 f 1 ′  ( 1 , 1 ) + 2 f 2 ′  ( 1 , 1 ) = 2   联立方程组得到 f 1 ′ ( 1 , 1 ) = 0 f_1'(1,1) = 0 f 1 ′  ( 1 , 1 ) = 0  , f 2 ′ ( 1 , 1 ) = 1 f_2'(1,1) = 1 f 2 ′  ( 1 , 1 ) = 1 写出全微分方程z = ∂ z ∂ u d u + ∂ z ∂ v d v z=\frac{\partial z}{\partial u} d u+\frac{\partial z}{\partial v} d v z = ∂ u ∂ z  d u + ∂ v ∂ z  d v  d f ( 1 , 1 ) = f 1 ′ ( 1 , 1 ) d x + f 2 ′ ( 1 , 1 ) d y = 0 d x + 1 d y \mathrm{d}f(1,1) = f_1'(1,1)\mathrm{d}x + f_2'(1,1)\mathrm{d}y=0dx+1\mathrm{d}y d f ( 1 , 1 ) = f 1 ′  ( 1 , 1 ) d x + f 2 ′  ( 1 , 1 ) d y = 0 d x + 1 d y   高昆仑版 (3) 数一2021 设函数 f ( x ) = sin  x 1 + x 2 f(x)=\frac{\sin x}{1+x^{2}} f ( x ) = 1 + x 2 s i n x    在 x = 0 x=0 x = 0   处的 3 次泰勒多项式为 a x + b x 2 + c x 3 a x+b x^{2}+c x^{3} a x + b x 2 + c x 3  , 则 ( )  (A) a = 1 , b = 0 , c = − 7 6 a=1, b=0, c=-\frac{7}{6} a = 1 , b = 0 , c = − 6 7   .(B) a = 1 , b = 0 , c = 7 6 a=1, b=0, c=\frac{7}{6} a = 1 , b = 0 , c = 6 7   .(C) a = − 1 , b = − 1 , c = − 7 6 a=-1, b=-1, c=-\frac{7}{6} a = − 1 , b = − 1 , c = − 6 7   .(D) a = − 1 , b = − 1 , c = 7 6 a=-1, b=-1, c=\frac{7}{6} a = − 1 , b = − 1 , c = 6 7   .
(3) 数一2021 问题是求函数 f ( x ) = sin  x 1 + x 2 f(x)=\frac{\sin x}{1+x^2} f ( x ) = 1 + x 2 s i n x    在 x = 0 x=0 x = 0   处的3次泰勒多项式 a x + b x 2 + c x 3 a x + b x^2 + c x^3 a x + b x 2 + c x 3  。  f ( x ) = sin  x ⋅ 1 1 + x 2 = ( x − 1 6 x 3 + … ) ⋅ ( 1 − x 2 + … ) \displaystyle f(x) = \sin x \cdot \frac{1}{1 + x^2} = \left( x - \frac{1}{6}x^3 + \ldots \right) \cdot \left( 1 - x^2 + \ldots \right) f ( x ) = sin x ⋅ 1 + x 2 1  = ( x − 6 1  x 3 + … ) ⋅ ( 1 − x 2 + … ) = x − x 3 − 1 6 x 3 + … \displaystyle = x - x^3 - \frac{1}{6}x^3 + \ldots = x − x 3 − 6 1  x 3 + … = x − 7 6 x 3 + … \displaystyle = x - \frac{7}{6}x^3 + \ldots = x − 6 7  x 3 + … 对比3次泰勒多项式: a x + b x 2 + c x 3 a x + b x^2 + c x^3 a x + b x 2 + c x 3  。 正确答案是 (B) a = 1 , b = 0 , c = − 7 6 a=1, b=0, c=-\frac{7}{6} a = 1 , b = 0 , c = − 6 7    sin  x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + ⋯   , − ∞ < x < + ∞ . \displaystyle \sin x=\sum_{n=0}^{\infty}(-1)^n \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots+(-1)^n \frac{x^{2 n+1}}{(2 n+1)!}+\cdots,-\infty<x<+\infty . sin x = n = 0 ∑ ∞  ( − 1 ) n ( 2 n + 1 )! x 2 n + 1  = x − 3 ! x 3  + 5 ! x 5  − 7 ! x 7  + ⋯ + ( − 1 ) n ( 2 n + 1 )! x 2 n + 1  + ⋯ , − ∞ < x < + ∞. 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + ⋯ + ( − 1 ) n x n + ⋯   , − 1 < x < 1. \displaystyle \frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^n x^n=1-x+x^2-x^3+\cdots+(-1)^n x^n+\cdots,-1<x<1 . 1 + x 1  = n = 0 ∑ ∞  ( − 1 ) n x n = 1 − x + x 2 − x 3 + ⋯ + ( − 1 ) n x n + ⋯ , − 1 < x < 1. (4) 数一2021 设函数 f ( x ) f(x) f ( x )   在区间 [ 0 , 1 ] [0,1] [ 0 , 1 ]   上连续, 则 ∫ 0 1 f ( x ) d x = ( ) \displaystyle \int_{0}^{1} f(x) \mathrm{d} x=(\quad) ∫ 0 1  f ( x ) d x = ( )   (A) lim  n → ∞ ∑ k = 1 n f ( 2 k − 1 2 n ) 1 2 n \displaystyle \lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(\frac{2 k-1}{2 n}\right) \frac{1}{2 n} n → ∞ lim  k = 1 ∑ n  f ( 2 n 2 k − 1  ) 2 n 1   .  (B) lim  n → ∞ ∑ k = 1 n f ( 2 k − 1 2 n ) 1 n \displaystyle \lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(\frac{2 k-1}{2 n}\right) \frac{1}{n} n → ∞ lim  k = 1 ∑ n  f ( 2 n 2 k − 1  ) n 1   .  (C) lim  n → ∞ ∑ k = 1 2 n f ( k − 1 2 n ) 1 n \displaystyle \lim _{n \rightarrow \infty} \sum_{k=1}^{2 n} f\left(\frac{k-1}{2 n}\right) \frac{1}{n} n → ∞ lim  k = 1 ∑ 2 n  f ( 2 n k − 1  ) n 1   .  (D) lim  n → ∞ ∑ k = 1 2 n f ( k 2 n ) 2 n \displaystyle \lim _{n \rightarrow \infty} \sum_{k=1}^{2 n} f\left(\frac{k}{2 n}\right) \frac{2}{n} n → ∞ lim  k = 1 ∑ 2 n  f ( 2 n k  ) n 2   .
(4) 只需要1 n 与 i n \frac{1}{n} \text{与}\frac{i}{n} n 1  与 n i   对应,或1 2 n 与 i 2 n \frac{1}{2n} \text{与} \frac{i}{2n} 2 n 1  与 2 n i   对应,秒杀B 分析选项 (B) 将 [ 0 , 1 ] [0,1] [ 0 , 1 ]   分为 n n n   等份 每个小区间为 [ k − 1 n , k n ] \left[\frac{k-1}{n}, \frac{k}{n}\right] [ n k − 1  , n k  ]  区间长度为 1 n \frac{1}{n} n 1   在 [ k − 1 n , k n ] \left[\frac{k-1}{n}, \frac{k}{n}\right] [ n k − 1  , n k  ]   中取中点 f ( k n + k − 1 n 2 ) f\left(\frac{\frac{k}{n}+\frac{k-1}{n}}{2}\right) f ( 2 n k  + n k − 1   )  =2 k − 1 2 n \frac{2k-1}{2n} 2 n 2 k − 1  = lim  n → ∞ ( 1 n ⋅ f ( 0 + 1 n 2 ) + 1 n ⋅ f ( 1 n + 2 n 2 ) + … + 1 n ⋅ f ( n − 1 n + 1 2 ) ) \displaystyle = \lim_{n \to \infty} \left( \frac{1}{n} \cdot f\left( \frac{0 + \frac{1}{n}}{2} \right) + \frac{1}{n} \cdot f\left( \frac{\frac{1}{n} + \frac{2}{n}}{2} \right) + \ldots + \frac{1}{n} \cdot f\left( \frac{\frac{n-1}{n} + 1}{2} \right) \right) = n → ∞ lim  ( n 1  ⋅ f ( 2 0 + n 1   ) + n 1  ⋅ f ( 2 n 1  + n 2   ) + … + n 1  ⋅ f ( 2 n n − 1  + 1  ) ) = lim  n → ∞ ( 1 n ⋅ f ( 1 2 n ) + 1 n ⋅ f ( 3 2 n ) + … + 1 n ⋅ f ( 2 n − 1 2 n ) ) \displaystyle = \lim_{n \to \infty} \left( \frac{1}{n} \cdot f\left( \frac{1}{2n} \right) + \frac{1}{n} \cdot f\left( \frac{3}{2n} \right) + \ldots + \frac{1}{n} \cdot f\left( \frac{2n-1}{2n} \right) \right) = n → ∞ lim  ( n 1  ⋅ f ( 2 n 1  ) + n 1  ⋅ f ( 2 n 3  ) + … + n 1  ⋅ f ( 2 n 2 n − 1  ) )  根据定积分定义 得 ∫ 0 1 f ( x ) d x = lim  n → ∞ ∑ k = 1 n f ( 2 k − 1 2 n ) ⋅ 1 n \displaystyle \int_0^1 f(x) \mathrm{d} x = \lim_{n \rightarrow \infty} \sum_{k=1}^n f\left(\frac{2k-1}{2n}\right) \cdot \frac{1}{n} ∫ 0 1  f ( x ) d x = n → ∞ lim  k = 1 ∑ n  f ( 2 n 2 k − 1  ) ⋅ n 1      分析其他选项 (A), (C), (D) 选项 (A),得到 1 2 ∫ 0 1 f ( x ) d x \displaystyle \frac{1}{2} \int_0^1 f(x) \mathrm{d} x 2 1  ∫ 0 1  f ( x ) d x  选项 (C),得到 2 ∫ 0 1 f ( x ) d x \displaystyle 2 \int_0^1 f(x) \mathrm{d} x 2 ∫ 0 1  f ( x ) d x  选项 (D),得到 4 ∫ 0 1 f ( x ) d x \displaystyle 4 \int_0^1 f(x) \mathrm{d} x 4 ∫ 0 1  f ( x ) d x   结论:答案是 (B) (5) 数一2021 二次型 f ( x 1 , x 2 , x 3 ) = ( x 1 + x 2 ) 2 + ( x 2 + x 3 ) 2 − ( x 3 − x 1 ) 2 f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}\right)^{2}+\left(x_{2}+x_{3}\right)^{2}-\left(x_{3}-x_{1}\right)^{2} f ( x 1  , x 2  , x 3  ) = ( x 1  + x 2  ) 2 + ( x 2  + x 3  ) 2 − ( x 3  − x 1  ) 2   的正惯性指数与负惯性指数依次 为 ( ) (\quad) ( )  (A) 2,0 .(B) 1,1 .(C) 2,1 .(D) 1,2 .
(5) 这个问题是关于计算二次型的正惯性指数和负惯性指数的。解题步骤如下: 展开并化简二次型 f ( x 1 , x 2 , x 3 ) f(x_1, x_2, x_3) f ( x 1  , x 2  , x 3  )  将 f ( x 1 , x 2 , x 3 ) f(x_1, x_2, x_3) f ( x 1  , x 2  , x 3  )   中的完全平方拆开f ( x 1 , x 2 , x 3 ) = ( x 1 + x 2 ) 2 + ( x 2 + x 3 ) 2 − ( x 3 − x 1 ) 2 \displaystyle f\left(x_1, x_2, x_3\right)= \left(x_1+x_2\right)^2+\left(x_2+x_3\right)^2-\left(x_3-x_1\right)^2 f ( x 1  , x 2  , x 3  ) = ( x 1  + x 2  ) 2 + ( x 2  + x 3  ) 2 − ( x 3  − x 1  ) 2 = x 1 2 + 2 x 1 x 2 + x 2 2 + x 2 2 + 2 x 2 x 3 + x 3 2 − x 3 2 + 2 x 1 x 3 − x 1 2 =x_1^2+2 x_1 x_2+x_2^2+x_2^2+2 x_2 x_3+x_3^2-x_3^2+2 x_1 x_3-x_1^2 = x 1 2  + 2 x 1  x 2  + x 2 2  + x 2 2  + 2 x 2  x 3  + x 3 2  − x 3 2  + 2 x 1  x 3  − x 1 2  = 2 x 2 2 + 2 x 1 x 2 + 2 x 2 x 3 + 2 x 1 x 3 . =2 x_2^2+2 x_1 x_2+2 x_2 x_3+2 x_1 x_3 . = 2 x 2 2  + 2 x 1  x 2  + 2 x 2  x 3  + 2 x 1  x 3  .  得到 2 x 2 2 + 2 x 1 x 2 + 2 x 2 x 3 + 2 x 1 x 3 2x_2^2 + 2x_1x_2 + 2x_2x_3 + 2x_1x_3 2 x 2 2  + 2 x 1  x 2  + 2 x 2  x 3  + 2 x 1  x 3  写成矩阵 A = [ 0 1 1 1 2 1 1 1 0 ] \displaystyle A = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0\end{array}\right] A =  0 1 1  1 2 1  1 1 0     计算特征多项式 ∣ λ E − A ∣ |\lambda E - A| ∣ λ E − A ∣ ∣ λ E − A ∣ = ∣ λ − 1 − 1 − 1 λ − 2 − 1 − 1 − 1 λ ∣ = r 1 − r 3 两行相减为 0 并且形成公因式 ∣ λ + 10 − λ − 1 − 1 λ − 2 − 1 − 1 − 1 λ ∣ \displaystyle |\lambda \boldsymbol{E}-\boldsymbol{A}|=\left|\begin{array}{ccc}\lambda -1 -1 \\-1 \lambda-2 -1 \\-1 -1 \lambda\end{array}\right|\xlongequal[]{\begin {array}{l}r_1-r_{3}\text{两行相减为}0\\\text{并且形成公因式}\end{array}}\left|\begin{array}{ccc}\lambda+1 0 -\lambda-1 \\-1 \lambda-2 -1 \\-1 -1 \lambda\end{array}\right| ∣ λ E − A ∣ =  λ − 1 − 1 − 1 λ − 2 − 1 − 1 − 1 λ   r 1  − r 3  两行相减为 0 并且形成公因式    λ + 10 − λ − 1 − 1 λ − 2 − 1 − 1 − 1 λ   = c 3 + c 1 ∣ λ + 100 − 1 λ − 2 − 2 − 1 − 1 λ − 1 \displaystyle \xlongequal[]{c_{3}+c_{1}}\mid \begin{array}{ccc}\lambda+1 0 0 \\-1 \lambda-2 -2 \\-1 -1 \lambda-1\end{array} c 3  + c 1   ∣ λ + 100 − 1 λ − 2 − 2 − 1 − 1 λ − 1  = 按照第一行展开 ( λ + 1 ) ∣ 100 − 1 λ − 2 − 2 − 1 − 1 λ − 1 ∣ \displaystyle \xlongequal[]{\text{按照第一行展开}}(\lambda+1)\left|\begin{array}{ccc}1 0 0 \\-1 \lambda-2 -2 \\-1 -1 \lambda-1\end{array}\right| 按照第一行展开  ( λ + 1 )  100 − 1 λ − 2 − 2 − 1 − 1 λ − 1   = ( λ + 1 ) [ ( λ − 2 ) ( λ − 1 ) − 2 ] → 先展开 [ λ 2 − 3 λ + 2 − 2 ] \displaystyle \begin{array}{l} =(\lambda+1)[(\lambda-2)(\lambda-1)-2] \xrightarrow[]{\text{先展开}\left[\lambda^2-3 \lambda+2-2\right]}\end{array} = ( λ + 1 ) [( λ − 2 ) ( λ − 1 ) − 2 ] 先展开 [ λ 2 − 3 λ + 2 − 2 ]   = 因式分解 λ ( λ + 1 ) ( λ − 3 ) \displaystyle \xlongequal[]{\text{因式分解}}\lambda(\lambda+1)(\lambda-3) 因式分解  λ ( λ + 1 ) ( λ − 3 )  计算得到 λ ( λ + 1 ) ( λ − 3 ) \lambda(\lambda + 1)(\lambda - 3) λ ( λ + 1 ) ( λ − 3 )  确定正惯性指数和负惯性指数 特征值为 0 , − 1 , 3 0, -1, 3 0 , − 1 , 3 正惯性指数 p = 1 p = 1 p = 1   (一个正特征值) 负惯性指数 q = 1 q = 1 q = 1   (一个负特征值)   (6) 已知 α 1 = ( 1 0 1 ) , α 2 = ( 1 2 1 ) , α 3 = ( 3 1 2 ) \displaystyle \boldsymbol{\alpha}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \boldsymbol{\alpha}_{2}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), \boldsymbol{\alpha}_{3}=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right) α 1  =  1 0 1   , α 2  =  1 2 1   , α 3  =  3 1 2    , 记 β 1 = α 1 , β 2 = α 2 − k β 1 , β 3 = α 3 − l 1 β 1 − l 2 β 2 ⏟ 正好对应施密特正交化 \underbrace{\boldsymbol{\beta}_{1}=\boldsymbol{\alpha}_{1}, \boldsymbol{\beta}_{2}=\boldsymbol{\alpha}_{2}-k \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{3}=\boldsymbol{\alpha}_{3}-l_{1} \boldsymbol{\beta}_{1}-l_{2} \boldsymbol{\beta}_{2}}_{\text{正好对应施密特正交化}} 正好对应施密特正交化 β 1  = α 1  , β 2  = α 2  − k β 1  , β 3  = α 3  − l 1  β 1  − l 2  β 2     , 若 β 1 \boldsymbol{\beta}_{1} β 1   , β 2 , β 3 \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3} β 2  , β 3    两两正交, 则 l 1 , l 2 l_{1}, l_{2} l 1  , l 2    依次为 ( ) (\quad) ( )   (A) 5 2 , 1 2 \frac{5}{2}, \frac{1}{2} 2 5  , 2 1   .  (B) − 5 2 , 1 2 -\frac{5}{2}, \frac{1}{2} − 2 5  , 2 1   .  (C) 5 2 , − 1 2 \frac{5}{2},-\frac{1}{2} 2 5  , − 2 1   .  (D) − 5 2 , − 1 2 -\frac{5}{2},-\frac{1}{2} − 2 5  , − 2 1   .
(6) β 3 = α 3 − ( β 1 , α 3 ) ( β 1 , β 1 ) ⏟ l 1 β 1 − ( β 2 , α 3 ) ( β 2 , β 2 ) ⏟ l 2 β 2 \boldsymbol{\beta}_3 = \boldsymbol{\alpha}_3 - \underbrace{\frac{(\boldsymbol{\beta}_1, \boldsymbol{\alpha}_3)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)}}_{l_1}\boldsymbol{\beta}_1 - \underbrace{\frac{(\boldsymbol{\beta}_2, \boldsymbol{\alpha}_3)}{(\boldsymbol{\beta}_2, \boldsymbol{\beta}_2)}}_{l_2}\boldsymbol{\beta}_2 β 3  = α 3  − l 1  ( β 1  , β 1  ) ( β 1  , α 3  )    β 1  − l 2  ( β 2  , β 2  ) ( β 2  , α 3  )    β 2  进行施密特正交化:对 α 1 , α 2 , α 3 \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 α 1  , α 2  , α 3    进行正交化处理 令 β 1 = α 1 = ( 1 0 1 ) \displaystyle \boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1=\left(\begin{array}{l}1\\ 0 \\ 1\end{array}\right) β 1  = α 1  =  1 0 1    计算 β 2 = α 2 − ( β 1 , α 2 ) ( β 1 , β 1 ) β 1 \boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 - \frac{(\boldsymbol{\beta}_1, \boldsymbol{\alpha}_2)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)} \boldsymbol{\beta}_1 β 2  = α 2  − ( β 1  , β 1  ) ( β 1  , α 2  )  β 1  计算内积 ( β 1 , α 2 ) = β 1 T α 2 = ( 1 , 0 , 1 ) ( 1 2 1 ) = 2 \displaystyle (\boldsymbol{\beta}_1, \boldsymbol{\alpha}_2)=\boldsymbol{\beta}_1^{\mathrm{T}} \boldsymbol{\alpha}_2=(1,0,1)\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)=2 ( β 1  , α 2  ) = β 1 T  α 2  = ( 1 , 0 , 1 )  1 2 1   = 2  计算内积 ( β 1 , β 1 ) = β 1 T β 1 = ( 1 , 0 , 1 ) ( 1 0 1 ) = 2 \displaystyle (\boldsymbol{\beta}_1, \boldsymbol{\beta}_1) = \boldsymbol{\beta}_1^{\mathrm{T}} \boldsymbol{\beta}_1=(1,0,1)\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=2 ( β 1  , β 1  ) = β 1 T  β 1  = ( 1 , 0 , 1 )  1 0 1   = 2  得到 β 2 = ( 1 2 1 ) − 2 2 ( 1 0 1 ) = ( 0 2 0 ) \displaystyle \boldsymbol{\beta}_2 =\left(\begin{array}{l}1 \\2 \\1\end{array}\right)-\frac{2}{2}\left(\begin{array}{l}1 \\0 \\1\end{array}\right)=\left(\begin{array}{l}0 \\2 \\0\end{array}\right) β 2  =  1 2 1   − 2 2   1 0 1   =  0 2 0     计算 β 3 = α 3 − ( β 1 , α 3 ) ( β 1 , β 1 ) β 1 − ( β 2 , α 3 ) ( β 2 , β 2 ) β 2 \boldsymbol{\beta}_3 = \boldsymbol{\alpha}_3 - \frac{(\boldsymbol{\beta}_1, \boldsymbol{\alpha}_3)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)} \boldsymbol{\beta}_1 - \frac{(\boldsymbol{\beta}_2, \boldsymbol{\alpha}_3)}{(\boldsymbol{\beta}_2, \boldsymbol{\beta}_2)} \boldsymbol{\beta}_2 β 3  = α 3  − ( β 1  , β 1  ) ( β 1  , α 3  )  β 1  − ( β 2  , β 2  ) ( β 2  , α 3  )  β 2  计算内积( β 1 , α 3 ) = β 1 T α 3 = ( 1 , 0 , 1 ) ( 3 1 2 ) = 5 \displaystyle (\boldsymbol{\beta}_1, \boldsymbol{\alpha}_3) =\boldsymbol{\beta}_1^{\mathrm{T}} \boldsymbol{\alpha}_3=(1,0,1)\left(\begin{array}{l}3 \\1 \\2\end{array}\right)=5 ( β 1  , α 3  ) = β 1 T  α 3  = ( 1 , 0 , 1 )  3 1 2   = 5  计算内积 ( β 2 , α 3 ) = β 2 T α 3 = ( 0 , 2 , 0 ) ( 3 1 2 ) = 2 ,  \displaystyle \left(\boldsymbol{\beta}_2, \boldsymbol{\alpha}_3\right)=\boldsymbol{\beta}_2^{\mathrm{T}} \boldsymbol{\alpha}_3=(0,2,0)\left(\begin{array}{l}3 \\1 \\2\end{array}\right)=2 \text {, } ( β 2  , α 3  ) = β 2 T  α 3  = ( 0 , 2 , 0 )  3 1 2   = 2 ,   计算内积 ( β 2 , β 2 ) = β 2 T β 2 = ( 0 , 2 , 0 ) ( 0 2 0 ) = 4 \displaystyle \left(\boldsymbol{\beta}_2, \boldsymbol{\beta}_2\right)=\boldsymbol{\beta}_2^{\mathrm{T}} \boldsymbol{\beta}_2=(0,2,0)\left(\begin{array}{l}0 \\ 2 \\ 0\end{array}\right)=4 ( β 2  , β 2  ) = β 2 T  β 2  = ( 0 , 2 , 0 )  0 2 0   = 4   得到 β 3 = α 3 − 5 2 β 1 − 1 2 β 2 \boldsymbol{\beta}_3 = \boldsymbol{\alpha}_3 - \frac{5}{2} \boldsymbol{\beta}_1 - \frac{1}{2} \boldsymbol{\beta}_2 β 3  = α 3  − 2 5  β 1  − 2 1  β 2  确定 l 1 l_1 l 1    和 l 2 l_2 l 2  由上述计算可知 l 1 = 5 2 l_1 = \frac{5}{2} l 1  = 2 5   , l 2 = 1 2 l_2 = \frac{1}{2} l 2  = 2 1      (7) 设 A , B \boldsymbol{A}, \boldsymbol{B} A , B   为 n n n   阶实矩阵, 下列不成立的是 ( )  ( A) r ( A O O A T A ) = 2 r ( A ) \displaystyle r\left(\begin{array}{cc}\boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\end{array}\right)=2 r(\boldsymbol{A}) r ( A O  O A T A  ) = 2 r ( A )  .  (B) r ( A A B O A T ) = 2 r ( A ) \displaystyle r\left(\begin{array}{cc}\boldsymbol{A} & \boldsymbol{A} \boldsymbol{B} \\ \boldsymbol{O} & \boldsymbol{A}^{\mathrm{T}}\end{array}\right)=2 r(\boldsymbol{A}) r ( A O  A B A T  ) = 2 r ( A )  .  ( C) r ( A B A O A A T ) = 2 r ( A ) \displaystyle r\left(\begin{array}{cc}\boldsymbol{A} & \boldsymbol{B} \boldsymbol{A} \\ \boldsymbol{O} & \boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\end{array}\right)=2 r(\boldsymbol{A}) r ( A O  B A A A T  ) = 2 r ( A )   (D) r ( A O B A A T ) = 2 r ( A ) \displaystyle r\left(\begin{array}{cc}\boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{B} \boldsymbol{A} & \boldsymbol{A}^{\mathrm{T}}\end{array}\right)=2 r(\boldsymbol{A}) r ( A B A  O A T  ) = 2 r ( A )  .
(7) 答 应选 C. 解 由矩阵的秩的性质知, r ( A ) = r ( A T ) = r ( A A T ) = r ( A T A ) r(\boldsymbol{A})=r\left(\boldsymbol{A}^{\mathrm{T}}\right)=r\left(\boldsymbol{A A ^ { \mathrm { T } }}\right)=r\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right) r ( A ) = r ( A T ) = r ( A A T ) = r ( A T A )  . 故 r ( A O O A T A ) = r ( A ) + r ( A T A ) = 2 r ( A ) \displaystyle r\left(\begin{array}{cc}\boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\end{array}\right)=r(A)+r\left(A^T A\right)=2 r(A) r ( A O  O A T A  ) = r ( A ) + r ( A T A ) = 2 r ( A )  , 选项 B 成立; 对于(B),因为A B \displaystyle AB A B   的列变换可由 A \displaystyle A A   的列变换消去,于是 r [ A A B O A T ] = r [ A O O A T ] = r ( A ) + r ( A T ) = 2 r ( A ) . \displaystyle r\left[\begin{array}{cc} A & AB \\ O & A^T \end{array}\right] = r\left[\begin{array}{cc} A & O \\ O & A^T \end{array}\right] = r(A) + r(A^T) = 2r(A). r [ A O  A B A T  ] = r [ A O  O A T  ] = r ( A ) + r ( A T ) = 2 r ( A ) .  对于(C),B A BA B A  为行变换 ,无法用A A A  的列变换消去 而r [ A B A O A A T ] \displaystyle r\left[\begin{array}{cc} A & BA \\ O & AA^T \end{array}\right] r [ A O  B A A A T  ]  未必等于r [ A O O A A T ] . r\left[\begin{array}{cc} A & O \\ O & AA^T \end{array}\right]. r [ A O  O A A T  ] .   对于(D),因为 B A \displaystyle BA B A   的行变换可由 A \displaystyle A A   的行变换消去,于是 r [ A O B A A T ] = r [ A O O A T ] = r ( A ) + r ( A T ) = 2 r ( A ) . \displaystyle r\left[\begin{array}{ll} A & O \\ BA & A^T \end{array}\right] = r\left[\begin{array}{ll} A & O \\ O & A^T \end{array}\right] = r(A) + r(A^T) = 2r(A). r [ A B A  O A T  ] = r [ A O  O A T  ] = r ( A ) + r ( A T ) = 2 r ( A ) .  (8) 设 A , B A, B A , B   为随机事件, 且 0 < P ( B ) < 1 0<P(B)<1 0 < P ( B ) < 1  , 下列命题中为假命题的是 ( ) (\quad) ( )   (A) 若 P ( A ∣ B ) = P ( A ) P(A \mid B)=P(A) P ( A ∣ B ) = P ( A )  , 则 P ( A ∣ B ˉ ) = P ( A ) P(A \mid \bar{B})=P(A) P ( A ∣ B ˉ ) = P ( A )  .  (B) 若 P ( A ∣ B ) > P ( A ) P(A \mid B)>P(A) P ( A ∣ B ) > P ( A )  , 则 P ( A ˉ ∣ B ˉ ) > P ( A ˉ ) P(\bar{A} \mid \bar{B})>P(\bar{A}) P ( A ˉ ∣ B ˉ ) > P ( A ˉ )  .  (C) 若 P ( A ∣ B ) > P ( A ∣ B ˉ ) P(A \mid B)>P(A \mid \bar{B}) P ( A ∣ B ) > P ( A ∣ B ˉ )  , 则 P ( A ∣ B ) > P ( A ) P(A \mid B)>P(A) P ( A ∣ B ) > P ( A )  .  (D) 若 P ( A ∣ A ∪ B ) > P ( A ˉ ∣ A ∪ B ) P(A \mid A \cup B)>P(\bar{A} \mid A \cup B) P ( A ∣ A ∪ B ) > P ( A ˉ ∣ A ∪ B )  , 则 P ( A ) > P ( B ) P(A)>P(B) P ( A ) > P ( B )  .
小崔版 思路: 左侧的式子恒等变形,右侧的式子也恒等变形 最终能变成同一个式子  A 左侧:P ( A B ) P ( B ) = P ( A ) → 移项 P ( A B ) = P ( A ) P ( B ) \displaystyle \frac{P(A B)}{P(B)}=P(A) \xrightarrow[]{\text{移项}} P(A B)=P(A) P(B) P ( B ) P ( A B )  = P ( A ) 移项  P ( A B ) = P ( A ) P ( B )  右侧:P ( A B ˉ ) P ( B ˉ ) = P ( A ) → 移项 P ( A B ˉ ) = P ( A ) P ( B ˉ ) → P ( B ˉ ) = 1 − P ( B ) 取对立事件 \displaystyle \frac{P(A \bar{B})}{P(\bar{B})}=P(A) \xrightarrow[]{\text{移项}} P(A \bar{B})=P(A) P(\bar{B})\xrightarrow[P(\bar{B})=1-P(B)]{\text{取对立事件}} P ( B ˉ ) P ( A B ˉ )  = P ( A ) 移项  P ( A B ˉ ) = P ( A ) P ( B ˉ ) 取对立事件 P ( B ˉ ) = 1 − P ( B )  P ( A ) − P ( A B ) = P ( A ) ( 1 − P ( B ) ) = P ( A ) − P ( A ) P ( B ) \displaystyle P(A)-P(A B)=P(A)(1-P(B) )=P(A)-P(A)P(B) P ( A ) − P ( A B ) = P ( A ) ( 1 − P ( B )) = P ( A ) − P ( A ) P ( B ) ⇔ P ( A B ) = P ( A ) P ( B ) \displaystyle \Leftrightarrow P(A B)=P(A) P(B) ⇔ P ( A B ) = P ( A ) P ( B )   B 左侧:若 P ( A ∣ B ) > P ( A ) \displaystyle P(A \mid B) > P(A) P ( A ∣ B ) > P ( A )  ,则 → P ( A B ) P ( B ) > P ( A ) 条件概率 P ( A B ) > P ( A ) P ( B ) \displaystyle \xrightarrow[\frac{P(AB)}{P(B)} > P(A)]{\text{条件概率}}P(AB) > P(A)P(B) 条件概率 P ( B ) P ( A B )  > P ( A )  P ( A B ) > P ( A ) P ( B )  右侧:P ( A ˉ ∩ B ˉ ) P ( B ˉ ) > 1 − P ( A ) ⇔ 1 − P ( A + B ) 1 − P ( B ) > 1 − P ( A ) \displaystyle \frac{P(\bar{A} \cap \bar{B})}{P(\bar{B})} >1-P(A) \Leftrightarrow \frac{1-P(A+B)}{1-P(B)}>1-P(A) P ( B ˉ ) P ( A ˉ ∩ B ˉ )  > 1 − P ( A ) ⇔ 1 − P ( B ) 1 − P ( A + B )  > 1 − P ( A ) 1 − P ( A ) − P ( B ) + P ( A B ) 1 − P ( B ) > 1 − P ( A ) \displaystyle \frac{1-P(A)-P(B)+P(A B)}{1-P(B)}>1-P(A) 1 − P ( B ) 1 − P ( A ) − P ( B ) + P ( A B )  > 1 − P ( A ) 1 − P ( A ) − P ( B ) ‾ + P ( A B ) > 1 − P ( A ) − P ( B ) ‾ + P ( A ) P ( B ) \displaystyle \underline{1-P(A)-P(B)}+P(A B)>\underline{1-P(A)-P(B)} +P(A)P(B) 1 − P ( A ) − P ( B )  + P ( A B ) > 1 − P ( A ) − P ( B )  + P ( A ) P ( B )   C 左侧:P ( A B ) P ( B ) > P ( A ) − P ( A B ) 1 − P ( B ) \displaystyle \frac{P(A B)}{P(B)}>\frac{P(A)-P(A B)}{1-P(B)} P ( B ) P ( A B )  > 1 − P ( B ) P ( A ) − P ( A B )  → 交叉相乘 P ( A B ) − P ( B ) P ( A B ) > P ( A ) P ( B ) − P ( B ) P ( A B ) \displaystyle \xrightarrow[]{\text{交叉相乘}}P(A B)-P(B) P(A B)>P(A) P(B)-P(B) P(A B) 交叉相乘  P ( A B ) − P ( B ) P ( A B ) > P ( A ) P ( B ) − P ( B ) P ( A B )  右侧:同B选项左侧  D不成立 (9) 设 ( X 1 , Y 1 ) , ( X 2 , Y 2 ) , ⋯   , ( X n , Y n ) \left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \cdots,\left(X_{n}, Y_{n}\right) ( X 1  , Y 1  ) , ( X 2  , Y 2  ) , ⋯ , ( X n  , Y n  )   为来自总体 N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) \displaystyle N\left(\mu_{1}, \mu_{2} ; \sigma_{1}^{2}, \sigma_{2}^{2} ; \rho\right) N ( μ 1  , μ 2  ; σ 1 2  , σ 2 2  ; ρ )   的简单随机样本, 令 θ = μ 1 − μ 2 , X ˉ = 1 n ∑ i = 1 n X i , Y ˉ = 1 n ∑ i = 1 n Y i , θ ^ = X ˉ − Y ˉ \displaystyle \theta=\mu_{1}-\mu_{2}, \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}, \hat{\theta}=\bar{X}-\bar{Y} θ = μ 1  − μ 2  , X ˉ = n 1  i = 1 ∑ n  X i  , Y ˉ = n 1  i = 1 ∑ n  Y i  , θ ^ = X ˉ − Y ˉ  , 则 ( ) (\quad) ( )   (A) θ ^ \hat{\theta} θ ^   是 θ \theta θ   的无偏估计, D ( θ ^ ) = σ 1 2 + σ 2 2 n \displaystyle D(\hat{\theta})=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{n} D ( θ ^ ) = n σ 1 2  + σ 2 2    .  (B) θ ^ \hat{\theta} θ ^   不是 θ \theta θ   的无偏估计, D ( θ ^ ) = σ 1 2 + σ 2 2 n \displaystyle D(\hat{\theta})=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{n} D ( θ ^ ) = n σ 1 2  + σ 2 2    .  (C) θ ^ \hat{\theta} θ ^   是 θ \theta θ   的无偏估计, D ( θ ^ ) = σ 1 2 + σ 2 2 − 2 ρ σ 1 σ 2 n \displaystyle D(\hat{\theta})=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}}{n} D ( θ ^ ) = n σ 1 2  + σ 2 2  − 2 ρ σ 1  σ 2    .  (D) θ ^ \hat{\theta} θ ^   不是 θ \theta θ   的无偏估计, D ( θ ^ ) = σ 1 2 + σ 2 2 − 2 ρ σ 1 σ 2 n \displaystyle D(\hat{\theta})=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}}{n} D ( θ ^ ) = n σ 1 2  + σ 2 2  − 2 ρ σ 1  σ 2    .
(9) ρ = Cov  ( X , Y ) D ( X ) D ( Y ) = E ( X Y ) − E ( X ) E ( Y ) D ( X ) D ( Y ) . \rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{D(X)} \sqrt{D(Y)}}=\frac{E(X Y)-E(X) E(Y)}{\sqrt{D(X)} \sqrt{D(Y)}} . ρ = D ( X )  D ( Y )  Cov ( X , Y )  = D ( X )  D ( Y )  E ( X Y ) − E ( X ) E ( Y )  . 求样本期望 \displaystyle  由E ( θ ^ ) = E ( X ˉ − Y ˉ ) = E X ˉ − E Y ˉ ∠ E X − E Y = μ 1 − μ 2 = θ . E(\hat{\theta}) = E(\bar{X}-\bar{Y}) = E\bar{X} - E\bar{Y} \angle EX - EY = \mu_{1} - \mu_{2} = \theta. E ( θ ^ ) = E ( X ˉ − Y ˉ ) = E X ˉ − E Y ˉ ∠ EX − E Y = μ 1  − μ 2  = θ .  求样本方差 D ( θ ^ ) = θ = μ 1 − μ 2 D ( X ˉ − Y ˉ ) = 性质 D X ˉ + D Y ˉ − 2 Cov  ( X ˉ , Y ˉ ) \displaystyle D(\hat{\theta}) \xlongequal[]{\theta=\mu_{1}-\mu_{2}} D(\bar{X}-\bar{Y}) \xlongequal[]{\text{性质}} D\bar{X} + D\bar{Y} - 2\operatorname{Cov}(\bar{X},\bar{Y}) D ( θ ^ ) θ = μ 1  − μ 2   D ( X ˉ − Y ˉ ) 性质  D X ˉ + D Y ˉ − 2 Cov ( X ˉ , Y ˉ ) Cov  ( X ˉ , Y ˉ ) = ρ σ 1 σ 2 n \displaystyle \operatorname{Cov}(\bar{X}, \bar{Y}) = \frac{\rho \sigma_1 \sigma_2}{n} Cov ( X ˉ , Y ˉ ) = n ρ σ 1  σ 2   = D ( X ˉ ) = σ 1 2 n , D ( Y ˉ ) = σ 2 2 n ( 1 n D X + 1 n D Y − 2 Cov  ( 1 n ∑ i = 1 n X i , 1 n ∑ i = 1 n Y i ) \displaystyle \xlongequal[]{D(\bar{X}) = \frac{\sigma_1^2}{n}\text{,}D(\bar{Y}) = \frac{\sigma_2^2}{n}}\left(\frac{1}{n} DX + \frac{1}{n} DY - 2 \operatorname{Cov}\left(\frac{1}{n}\sum_{i=1}^{n} X_{i}, \frac{1}{n}\sum_{i=1}^{n} Y_{i}\right)\right. D ( X ˉ ) = n σ 1 2   , D ( Y ˉ ) = n σ 2 2    ( n 1  D X + n 1  D Y − 2 Cov ( n 1  i = 1 ∑ n  X i  , n 1  i = 1 ∑ n  Y i  ) = 1 n σ 1 2 + 1 n σ 2 2 − 2 ⋅ 1 n ⋅ 1 n Cov  ( ∑ i = 1 n X i , ∑ i = 1 n Y i ) \displaystyle = \frac{1}{n}\sigma_{1}^{2} + \frac{1}{n}\sigma_{2}^{2} - 2 \cdot \frac{1}{n} \cdot \frac{1}{n} \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} Y_{i}\right) = n 1  σ 1 2  + n 1  σ 2 2  − 2 ⋅ n 1  ⋅ n 1  Cov ( i = 1 ∑ n  X i  , i = 1 ∑ n  Y i  ) { X 1 , Y 1 ⋯ … X 1 , Y n , ⋯   , { X n , Y 1 ⋯ … X n , Y n \displaystyle \left\{\begin{array}{l}X_1, Y_1 \\ \cdots \ldots \\ X_1, Y_n\end{array}, \cdots,\left\{\begin{array}{l}X_n, Y_1 \\ \cdots \ldots \\ X_n, Y_n\end{array}\right.\right. ⎩ ⎨ ⎧  X 1  , Y 1  ⋯… X 1  , Y n   , ⋯ , ⎩ ⎨ ⎧  X n  , Y 1  ⋯… X n  , Y n   = 处理协方差 1 n σ 1 2 + 1 n σ 2 2 − 2 ⋅ 1 n ⋅ 1 n ⋅ n Cov  ( X 1 , Y 1 ) \displaystyle \xlongequal[]{\text{处理协方差}}\frac{1}{n}\sigma_{1}^{2} + \frac{1}{n}\sigma_{2}^{2} - 2 \cdot \frac{1}{n} \cdot \frac{1}{n} \cdot n \operatorname{Cov}(X_{1}, Y_{1}) 处理协方差  n 1  σ 1 2  + n 1  σ 2 2  − 2 ⋅ n 1  ⋅ n 1  ⋅ n Cov ( X 1  , Y 1  ) = ρ = Cov  ( X , Y ) D ( X ) D ( Y ) 1 n σ 1 2 + 1 n σ 2 2 − 2 n ⋅ ρ ⋅ σ 1 ⋅ σ 2 . \displaystyle \xlongequal[]{\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{D(X)} \sqrt{D(Y)}}}\frac{1}{n}\sigma_{1}^{2} + \frac{1}{n}\sigma_{2}^{2} - \frac{2}{n} \cdot \rho \cdot \sigma_{1} \cdot \sigma_{2}. ρ = D ( X )  D ( Y )  Cov ( X , Y )   n 1  σ 1 2  + n 1  σ 2 2  − n 2  ⋅ ρ ⋅ σ 1  ⋅ σ 2  .  综上,θ ^ \hat{\theta} θ ^   是 θ \theta θ   的无偏估计,其方差为 σ 1 2 + σ 2 2 − 2 ρ σ 1 σ 2 n \displaystyle \frac{\sigma_1^2 + \sigma_2^2 - 2 \rho \sigma_1 \sigma_2}{n} n σ 1 2  + σ 2 2  − 2 ρ σ 1  σ 2    。因此,正确答案是选项 (C)。 (10) 设 X 1 , X 2 , ⋯   , X 16 X_{1}, X_{2}, \cdots, X_{16} X 1  , X 2  , ⋯ , X 16    是来自总体 N ( μ , 4 ) N(\mu, 4) N ( μ , 4 )   的简单随机样本, 考虑假设检验问题 H 0 : μ ⩽ 10 H_{0}: \mu \leqslant 10 H 0  : μ ⩽ 10  , H 1 : μ > 10 , Φ ( x ) H_{1}: \mu>10, \Phi(x) H 1  : μ > 10 , Φ ( x )   表示标准正态分布函数, 若该检验问题的拒绝域为 W = { X ˉ > 11 } W=\{\bar{X}>11\} W = { X ˉ > 11 }  , 其中 X ˉ = 1 16 ∑ i = 1 16 X i \displaystyle \bar{X}=\frac{1}{16} \sum_{i=1}^{16} X_{i} X ˉ = 16 1  i = 1 ∑ 16  X i   , 则 μ = 11.5 \mu=11.5 μ = 11.5   时, 该检验犯第二类错误的概率为 ( ) (\quad) ( )   ( A) 1 − Φ ( 0.5 ) 1-\Phi(0.5) 1 − Φ ( 0.5 )  .  ( B ) 1 − Φ ( 1 ) 1-\Phi(1) 1 − Φ ( 1 )  .  ( C) 1 − Φ ( 1.5 ) 1-\Phi(1.5) 1 − Φ ( 1.5 )  .  (D) 1 − Φ ( 2 ) 1-\Phi(2) 1 − Φ ( 2 )  .
(10) [01:07:54](file:///C:/Users/wangpanfeng/Videos/01.%E6%95%B0%E5%AD%A6%E4%B8%80/08.2021%E5%B9%B4%E6%95%B0%E4%B8%80%E7%9C%9F%E9%A2%98/01.2021%E5%B9%B4%E8%80%83%E7%A0%94%E6%95%B0%E5%AD%A6%E7%9C%9F%E9%A2%98%E9%80%89%E6%8B%A9%E9%A2%98%EF%BC%88%E6%95%B0%E4%B8%80%EF%BC%89.mp4#t=1:07:54)  答 应选 A. (1)两类错误 (1)第一类错误 (弃真错误): 当原假设 H 0 H_0 H 0    为真时, 但检验结果为拒绝 H 0 H_0 H 0   ;  (2)第二类错误 (存伪错误): 当原假设 H 0 H_0 H 0    不正确时, 但检验结果为接受 H 0 H_0 H 0   .   根据已知条件, μ = 11.5 \mu=11.5 μ = 11.5  , 原假设 H 0 : μ ⩽ 10 H_0: \mu \leqslant 10 H 0  : μ ⩽ 10   不为真. 由于该检验问题的拒绝域为 W = { X ˉ > 11 } W=\{\bar{X}>11\} W = { X ˉ > 11 }  , 得到接受域:X ˉ ⩽ 11 \bar{X} \leqslant 11 X ˉ ⩽ 11   故当 X ˉ ⩽ 11 \bar{X} \leqslant 11 X ˉ ⩽ 11   时, 不拒绝 H 0 H_0 H 0   . 此时, 该检验犯了第二类错误, 其概率为 P { X ˉ ⩽ 11 } P\{\bar{X} \leqslant 11\} P { X ˉ ⩽ 11 }  .   下面我们计算 P { X ˉ ⩽ 11 } P\{\bar{X} \leqslant 11\} P { X ˉ ⩽ 11 }   。 由样本均值 X ˉ = 1 16 ∑ i = 1 16 X i \displaystyle \bar{X} = \frac{1}{16} \sum_{i=1}^{16} X_i X ˉ = 16 1  i = 1 ∑ 16  X i   ,得n = 16 n = 16 n = 16 故 X ˉ ∼ N ( μ , 4 16 ) \bar{X} \sim N\left(\mu, \frac{4}{16}\right) X ˉ ∼ N ( μ , 16 4  )  , → μ = 11.5 X ˉ ∼ N ( 11.5 , 1 4 ) \xrightarrow[]{\mu=11.5}\bar{X} \sim N\left(11.5, \frac{1}{4}\right) μ = 11.5  X ˉ ∼ N ( 11.5 , 4 1  )  ,标准化可得, X ˉ − 11.5 1 2 ∼ N ( 0 , 1 ) \frac{\bar{X}-11.5}{\frac{1}{2}} \sim N(0,1) 2 1  X ˉ − 11.5  ∼ N ( 0 , 1 )  . P { X ˉ ⩽ 11 } = P { X ˉ − 11.5 1 2 ⩽ 11 − 11.5 1 2 } = Φ ( − 1 ) = 1 − Φ ( 1 ) P\{\bar{X} \leqslant 11\}=P\left\{\frac{\bar{X}-11.5}{\frac{1}{2}} \leqslant \frac{11-11.5}{\frac{1}{2}}\right\}=\Phi(-1)=1-\Phi(1) P { X ˉ ⩽ 11 } = P { 2 1  X ˉ − 11.5  ⩽ 2 1  11 − 11.5  } = Φ ( − 1 ) = 1 − Φ ( 1 ) 选项中没有Φ ( − 1 ) \Phi(-1) Φ ( − 1 )   ,只有Φ ( 1 ) \Phi(1) Φ ( 1 )  犯第二类错误落在接受域的概率:1 − Φ ( 1 ) 1 - \Phi(1) 1 − Φ ( 1 )   (2018)设总体 X X X   服从正态分布 N ( μ , σ 2 ) . X 1 , X 2 , ⋯   , X n \displaystyle N\left(\mu, \sigma^{2}\right) . X_{1}, X_{2}, \cdots, X_{n} N ( μ , σ 2 ) . X 1  , X 2  , ⋯ , X n    是来自总体 X X X   的简单随机样本,据此样本检验 假设 H 0 : μ = μ 0 , H 1 : μ ≠ μ 0 H_{0}: \mu=\mu_{0}, H_{1}: \mu \neq \mu_{0} H 0  : μ = μ 0  , H 1  : μ  = μ 0   , 则 ( ) (A) 如果在检验水平 α = 0.05 \alpha=0.05 α = 0.05   下拒绝 H 0 H_{0} H 0   , 那么 α = 0.01 \alpha=0.01 α = 0.01   下必拒绝 H 0 H_{0} H 0   . (B) 如果在检验水平 α = 0.05 \alpha=0.05 α = 0.05   下拒绝 H 0 H_{0} H 0   , 那么 α = 0.01 \alpha=0.01 α = 0.01   下必接受 H 0 H_{0} H 0   . (C) 如果在检验水平 α = 0.05 \alpha=0.05 α = 0.05   下接受 H 0 H_{0} H 0   , 那么 α = 0.01 \alpha=0.01 α = 0.01   下必拒绝 H 0 H_{0} H 0   . (D) 如果在检验水平 α = 0.05 \alpha=0.05 α = 0.05   下接受 H 0 H_{0} H 0   , 那么 α = 0.01 \alpha=0.01 α = 0.01   下必接受 H 0 H_{0} H 0   .  二、填空题 (本题共 6 小题,每小题 5 分,共 30 分, 把答案填在题中横线.上.)}
(11) ∫ 0 + ∞ 1 x 2 + 2 x + 2   d x = \displaystyle \int_{0}^{+\infty} \frac{1}{x^{2}+2 x+2} \mathrm{~d} x= ∫ 0 + ∞  x 2 + 2 x + 2 1    d x = 
(11) 答 应填 π 4 \frac{\pi}{4} 4 π   .
高昆仑版 ∫ 0 + ∞ 1 x 2 + 2 x + 2   d x = ∫ 0 + ∞ 1 ( x + 1 ) 2 + 1   d x \displaystyle \int_{0}^{+\infty} \frac{1}{x^{2}+2x+2} \, dx = \int_{0}^{+\infty} \frac{1}{(x+1)^{2}+1} \, dx ∫ 0 + ∞  x 2 + 2 x + 2 1  d x = ∫ 0 + ∞  ( x + 1 ) 2 + 1 1  d x = ∫ 1 1 + u 2 d u = arctan  ( u ) arctan  ( x + 1 ) ∣ 0 + ∞ \displaystyle \xlongequal[]{\int \frac1{1+u^2}du=\arctan(u)} \left. \arctan(x+1) \right|_{0}^{+\infty} ∫ 1 + u 2 1  d u = a r c t a n ( u )  arctan ( x + 1 ) ∣ 0 + ∞  = arctan  ( 1 ) = π 4 arctan  ( + ∞ ) = π 2 π 2 − π 4 = π 4 . \displaystyle \xlongequal[\arctan(1) = \frac{\pi}{4}]{\arctan(+\infty) = \frac{\pi}{2}}\frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}. a r c t a n ( + ∞ ) = 2 π  a r c t a n ( 1 ) = 4 π   2 π  − 4 π  = 4 π  . gpt版 计算积分 ∫ 0 + ∞ 1 x 2 + 2 x + 2   d x \displaystyle \int_{0}^{+\infty} \frac{1}{x^2 + 2x + 2} \, dx ∫ 0 + ∞  x 2 + 2 x + 2 1  d x 式子化简 分母化简:x 2 + 2 x + 2 x^2 + 2x + 2 x 2 + 2 x + 2   拆成x 2 + 2 x + 1 + 1 x^2 + 2x + 1 + 1 x 2 + 2 x + 1 + 1 完全平方:( x + 1 ) 2 + 1 (x + 1)^2 + 1 ( x + 1 ) 2 + 1   新积分形式:∫ 0 + ∞ 1 ( x + 1 ) 2 + 1   d ( x + 1 ) \displaystyle \int_0^{+\infty} \frac{1}{(x + 1)^2 + 1} \, d(x+1) ∫ 0 + ∞  ( x + 1 ) 2 + 1 1  d ( x + 1 )   计算积分 使用反正切函数:∫ 1 1 + u 2 d u = arctan  ( u ) \displaystyle \int \frac1{1+u^2}du=\arctan(u) ∫ 1 + u 2 1  d u = arctan ( u )  积分结果:= arctan  ( x + 1 ) ∣ 0 + ∞ = arctan  ( 1 ) = π 4 arctan  ( + ∞ ) = π 2 π 2 − π 4 = π 4 =\left. \arctan(x + 1) \right|_0^{+\infty}\xlongequal[\arctan(1) = \frac{\pi}{4}]{\arctan(+\infty) = \frac{\pi}{2}}\frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} = arctan ( x + 1 ) ∣ 0 + ∞  a r c t a n ( + ∞ ) = 2 π  a r c t a n ( 1 ) = 4 π   2 π  − 4 π  = 4 π     (12) 设函数 y = y ( x ) y=y(x) y = y ( x )   由参数方程 { x = 2 e t + t + 1 , y = 4 ( t − 1 ) e t + t 2 \displaystyle \left\{\begin{array}{l}x=2 \mathrm{e}^{t}+t+1, \\ y=4(t-1) \mathrm{e}^{t}+t^{2}\end{array}\right. { x = 2 e t + t + 1 , y = 4 ( t − 1 ) e t + t 2    确定, 则 d 2 y   d x 2 ∣ t = 0 = \left.\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right|_{t=0}=   d x 2 d 2 y   t = 0  =  d y d x = y ′ ( t ) x ′ ( t ) = 4 e t + 4 ( t − 1 ) e t + 2 t 2 e t + 1 ≈ 2 t , \displaystyle \frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{4e^t + 4(t-1)e^t + 2t}{2e^t + 1} \approx 2t, d x d y  = x ′ ( t ) y ′ ( t )  = 2 e t + 1 4 e t + 4 ( t − 1 ) e t + 2 t  ≈ 2 t , d 2 y d x 2 ∣ t = 0 = d ( 2 t ) d t ⋅ 1 x ′ ( t ) ∣ t = 0 = 2 2 e t + 1 ∣ t = 0 = 2 3 . \displaystyle \left. \frac{d^2y}{dx^2} \right|_{t=0} = \left. \frac{d(2t)}{dt} \cdot \frac{1}{x'(t)} \right|_{t=0} = \left. \frac{2}{2e^t + 1} \right|_{t=0} = \frac{2}{3}. d x 2 d 2 y   t = 0  = d t d ( 2 t )  ⋅ x ′ ( t ) 1   t = 0  = 2 e t + 1 2   t = 0  = 3 2  . (13) 欧拉方程 x 2 y ′ ′ + x y ′ − 4 y = 0 x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0 x 2 y ′′ + x y ′ − 4 y = 0   满足条件 y ( 1 ) = 1 , y ′ ( 1 ) = 2 y(1)=1, y^{\prime}(1)=2 y ( 1 ) = 1 , y ′ ( 1 ) = 2   的解为 y = y= y = 
(13) x = e t , x 2 y ′ ′ = D ( D − 1 ) y , x y ′ = D y , D = d d t \displaystyle x = e^t, \quad x^2 y'' = D(D-1) y, \quad x y' = D y, \quad D = \frac{d}{dt} x = e t , x 2 y ′′ = D ( D − 1 ) y , x y ′ = Dy , D = d t d  D ( D − 1 ) y + D y − 4 y = 0 \displaystyle D(D-1) y + D y - 4y = 0 D ( D − 1 ) y + Dy − 4 y = 0 → 整理 D 2 y − 4 y = 0 \displaystyle \xrightarrow[]{\text{整理}} D^2 y - 4y = 0 整理  D 2 y − 4 y = 0 → D = d d t d 2 y d t 2 − 4 y = 0 \displaystyle \xrightarrow[]{D = \frac{d}{dt} }\frac{d^2 y}{dt^2} - 4y = 0 D = d t d   d t 2 d 2 y  − 4 y = 0  ,从而→ 求特征方程 λ 2 − 4 = 0 \displaystyle \xrightarrow[]{\text{求特征方程}}\lambda^2 - 4 = 0 求特征方程  λ 2 − 4 = 0  ,得λ = ± 2 \displaystyle \lambda = \pm 2 λ = ± 2 → 通解公式 y = C 1 e 2 t + C 2 e − 2 t \displaystyle \xrightarrow[]{\text{通解公式}} y = C_1 e^{2t} + C_2 e^{-2t} 通解公式  y = C 1  e 2 t + C 2  e − 2 t { y = C 1 x 2 + C 2 x − 2 ← y ( 1 ) = 1 y ′ = 2 C 1 x − 2 C 2 x − 3 ← y ′ ( 1 ) = 2 \displaystyle \begin{cases} y = C_1 x^2 + C_2 x^{-2} \leftarrow y(1) = 1 \\y' = 2C_1 x - 2C_2 x^{-3} \leftarrow y'(1) = 2\end{cases} { y = C 1  x 2 + C 2  x − 2 ← y ( 1 ) = 1 y ′ = 2 C 1  x − 2 C 2  x − 3 ← y ′ ( 1 ) = 2  { 1 = C 1 + C 2 1 = C 1 − C 2 \displaystyle \begin{cases}1 = C_1 + C_2 \\1 = C_1 - C_2 \\\end{cases} { 1 = C 1  + C 2  1 = C 1  − C 2    ,得C 1 = 1 \displaystyle C_1=1 C 1  = 1 C 2 = 0 C_2=0 C 2  = 0 → 代入原式 y = x 2 \xrightarrow[]{\text{代入原式}}y = x^2 代入原式  y = x 2 2004 年数一试题欧拉方程  x 2   d 2 y   d x 2 + 4 x   d y   d x + 2 y = 0 ( x > 0 ) x^2 \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}+4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0(x>0) x 2   d x 2   d 2 y  + 4 x   d x   d y  + 2 y = 0 ( x > 0 )   的通解为 \qquad  (14) 设 Σ \displaystyle \Sigma Σ   为空间区域 { ( x , y , z ) ∣ x 2 + 4 y 2 ⩽ 4 , 0 ⩽ z ⩽ 2 } \left\{(x, y, z) \mid x^{2}+4 y^{2} \leqslant 4,0 \leqslant z \leqslant 2\right\} { ( x , y , z ) ∣ x 2 + 4 y 2 ⩽ 4 , 0 ⩽ z ⩽ 2 }   表面的外侧, 则曲面积分 ∬ Σ x 2   d y   d z + \displaystyle \iint_{\Sigma} x^{2} \mathrm{~d} y \mathrm{~d} z+ ∬ Σ  x 2   d y   d z +   y 2   d z   d x + z   d x   d y = y^{2} \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y= y 2   d z   d x + z   d x   d y = 
(14) 解 利用高斯公式,得 \displaystyle  原式= ∮ Σ x 2   d y   d z + y 2   d z   d x + z   d x   d y = \oint_\Sigma x^2 \, dy \, dz + y^2 \, dz \, dx + z \, dx \, dy = ∮ Σ  x 2 d y d z + y 2 d z d x + z d x d y = 高斯 ∭ Ω ( 2 x + 2 y + 1 )   d v \displaystyle \xlongequal[]{\text{高斯}} \iiint_\Omega (2x + 2y + 1) \, dv 高斯  ∭ Ω  ( 2 x + 2 y + 1 ) d v = x , y 奇函数为 0 0 + ∭ Ω 1   d v = V Ω = π a b × h 求圆柱体体积 π ⋅ 2 ⋅ 1 ⋅ 2 ⋅ 4 4 π . \displaystyle \xlongequal[x\text{,}y]{\text{奇函数为}0}0 + \iiint_\Omega 1 \, dv = V_\Omega \xlongequal[\pi ab\times h]{\text{求圆柱体体积}} \pi \cdot 2 \cdot 1 \cdot 2 \cdot \frac{4}{4} \pi. 奇函数为 0 x , y  0 + ∭ Ω  1 d v = V Ω  求圆柱体体积 πab × h  π ⋅ 2 ⋅ 1 ⋅ 2 ⋅ 4 4  π .  (15) 设 A = ( a i j ) \boldsymbol{A}=\left(a_{i j}\right) A = ( a ij  )   为 3 阶矩阵, A i j A_{i j} A ij    为元素 a i j a_{i j} a ij    的代数余子式, 若 A \boldsymbol{A} A   的每行元素之和均为 2 , 且 ∣ A ∣ = |\boldsymbol{A}|= ∣ A ∣ =   3 , 则 A 11 + A 21 + A 31 = A_{11}+A_{21}+A_{31}= A 11  + A 21  + A 31  = 
(15) 答案 方法2:构造一个行列式 由每行元素之和等于2\to往这里恒等变形,和构造新的行列式 ( 2 ) ∣ A ∣ = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = c 1 + c 2 + c 3 ∣ a 11 + a 12 + a 13 a 12 a 13 a 21 + a 22 + a 23 a 22 a 23 a 31 + a 32 + a 33 a 32 a 33 ∣ \displaystyle (2)|A|=\left|\begin{array}{lll}a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33}\end{array}\right|\xlongequal[]{c_1+c_2+c_3}\left|\begin{array}{lll}a_{11}+a_{12}+a_{13} a_{12} a_{13} \\ a_{21}+a_{22}+a_{23} a_{22} a_{23} \\ a_{31}+a_{32}+a_{33} a_{32} a_{33}\end{array}\right| ( 2 ) ∣ A ∣ =  a 11  a 12  a 13  a 21  a 22  a 23  a 31  a 32  a 33    c 1  + c 2  + c 3    a 11  + a 12  + a 13  a 12  a 13  a 21  + a 22  + a 23  a 22  a 23  a 31  + a 32  + a 33  a 32  a 33    将每行元素之和等于2代入,得= ∣ 2 a 12 a 13 2 a 22 a 23 2 a 32 a 33 ∣ \displaystyle =\left|\begin{array}{lll}2 & a_{12} & a_{13} \\ 2 & a_{22} & a_{23} \\ 2 & a_{32} & a_{33}\end{array}\right| =  2 2 2  a 12  a 22  a 32   a 13  a 23  a 33     按照第一列展开= 2 A 11 + 2 A 21 + 2 A 31 = 3 =2 A_{11}+2 A_{21}+2 A_{31}=3 = 2 A 11  + 2 A 21  + 2 A 31  = 3 则答案:A 11 + A 21 + A 31 = 3 2 A_{11}+A_{21}+A_{31}=\frac{3}{2} A 11  + A 21  + A 31  = 2 3     用元素和代数余子式的乘积这条路走不通,计算量太大[  分析  ] A i j →  概念 。  \displaystyle \begin{aligned} & {[\text { 分析 }] A_{i j} \rightarrow \text { 概念 。 }} \end{aligned}  [   分析   ] A ij  →   概念   。     →  定理  { ∣ A ∣ = a 11 A 11 + a 12 A 12 + ⋯ + a 1 n A 1 n a 11 A 21 + a 12 A 22 + ⋯ + a 1 n A 2 n = 0 \displaystyle \begin{aligned} \rightarrow \text { 定理 }\left\{\begin{array}{l}|A|=a_{11} A_{11}+a_{12} A_{12}+\cdots+a_{1 n} A_{1 n} \\a_{11} A_{21}+a_{12} A_{22}+\cdots+a_{1 n} A_{2 n}=0\end{array}\right. \end{aligned} →   定理   { ∣ A ∣ = a 11  A 11  + a 12  A 12  + ⋯ + a 1 n  A 1 n  a 11  A 21  + a 12  A 22  + ⋯ + a 1 n  A 2 n  = 0   方法3: A的每行元素之和为2,说明2是一个特征值,(1,1,1)ᵀ是一个特征向量 A [ 1 1 1 ] = [ 2 2 2 ] = 2 [ 1 1 1 ] \displaystyle A\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]=2\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] A  1 1 1   =  2 2 2   = 2  1 1 1    ∣ A ∣ = 3 |A|=3 ∣ A ∣ = 3  说明A可逆代数余子式的两个角度 从伴随矩阵分析(对应方法一) 从行列式的展开分析(对应方法二)  接下来用伴随矩阵分析  ∇ \nabla ∇   方法一: 用伴随矩阵∶题中所求, 是伴随矩阵第一行元素的和 当 A ∗ = [ ( A 11 A 21 A 31 A 12 A 22 A 32 A 13 A 23 A 33 ] \displaystyle A^*=\left[\begin{array}{}\left(A_{11}\right. & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right] A ∗ =  ( A 11  A 12  A 13   A 21  A 22  A 23   A 31  A 32  A 33    要求的是 则伴随矩阵第1,2,3行的和可以写为A ∗ [ 1 1 1 ] = [ ( 1 = A 11 + A 21 + A 31 = 3 2 ) ( 2 ) ( 3 ) ] \displaystyle A^*\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}(1=A_{11}+A_{21}+A_{31}=\frac{3}{2}) \\ (2) \\ (3)\end{array}\right] A ∗  1 1 1   =  ( 1 = A 11  + A 21  + A 31  = 2 3  ) ( 2 ) ( 3 )     ∇ \nabla ∇   题中给大家的是, A矩阵, 每行元素的和 A A A   每行元素之和均为 2,即{ a 11 + a 12 + a 13 = 2 a 21 + a 22 + a 23 = 2 a 31 + a 32 + a 33 = 2 \displaystyle \left\{\begin{array}{l}a_{11}+a_{12}+a_{13}=2 \\a_{21}+a_{22}+a_{23}=2 \\a_{31}+a_{32}+a_{33}=2\end{array}\right. ⎩ ⎨ ⎧  a 11  + a 12  + a 13  = 2 a 21  + a 22  + a 23  = 2 a 31  + a 32  + a 33  = 2  这其实是一个乘法[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] [ 1 1 1 ] = [ 2 2 2 ] → 将矩阵简写 A [ 1 1 1 ] = [ 2 2 2 ] \displaystyle \left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{array}\right]\left[\begin{array}{l}1 \\1 \\1\end{array}\right]=\left[\begin{array}{l}2 \\2 \\2\end{array}\right]\xrightarrow[]{\text{将矩阵简写}}A\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]  a 11  a 21  a 31   a 12  a 22  a 32   a 13  a 23  a 33     1 1 1   =  2 2 2   将矩阵简写  A  1 1 1   =  2 2 2    另一种写法,A [ 1 1 1 ] = [ 2 2 2 ] → 用 A ∗ 左乘 \displaystyle A\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]\xrightarrow[]{\text{用}A^*\text{左乘}} A  1 1 1   =  2 2 2   用 A ∗ 左乘  A ∗ [ 2 2 2 ] = A ∗ A ‾ [ 1 1 1 ] → A ∗ ⋅ A = ∣ A ∣ ∣ A ∣ E [ 1 1 1 ] = 3 [ 1 1 1 ] A^*\left[\begin{array}{l}2 \\2 \\2\end{array}\right]=\underline{A^* A}\left[\begin{array}{l}1 \\1 \\1\end{array}\right]\xrightarrow[]{A^{*}\cdot A=|A|}|A| E\left[\begin{array}{l}1 \\1 \\1\end{array}\right]=3\left[\begin{array}{l}1 \\1 \\1\end{array}\right] A ∗  2 2 2   = A ∗ A   1 1 1   A ∗ ⋅ A = ∣ A ∣  ∣ A ∣ E  1 1 1   = 3  1 1 1   式子两边倍除2,得到∴ A ∗ [ 1 1 1 ] = [ 3 2 3 2 2 2 ] \displaystyle \therefore A^*\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}\frac{3}{2} \\ \frac{3}{2} \\ \frac{2}{2}\end{array}\right] ∴ A ∗  1 1 1   =  2 3  2 3  2 2     从而伴随矩阵的第一行元素:A 11 + A 21 + A 31 = 3 2 A_{11}+A_{21}+A_{31}=\frac{3}{2} A 11  + A 21  + A 31  = 2 3    (16) 甲、乙两个盒子中各装有 2 个红球和 2 个白球, 先从甲盒中任取一球, 观察颜色后放入乙盒, 再从乙盒中任取一球, 令 X , Y X, Y X , Y   分别表示从甲盒和乙盒中取到的红球的个数, 则 X X X   与 Y Y Y   的相关系数为
(16) (解) 根据相关系数的计算公式, X X X   与 Y Y Y   的相关系数为ρ = Cov  ( X , Y ) D ( X ) D ( Y ) = E ( X Y ) − E ( X ) E ( Y ) D ( X ) D ( Y ) . \rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{D(X)} \sqrt{D(Y)}}=\frac{E(X Y)-E(X) E(Y)}{\sqrt{D(X)} \sqrt{D(Y)}} . ρ = D ( X )  D ( Y )  Cov ( X , Y )  = D ( X )  D ( Y )  E ( X Y ) − E ( X ) E ( Y )  . P { X = 0 ⋅ Y = 0 } = 2 4 ⋅ 3 5 = 3 10 \displaystyle P\{X=0 \cdot Y=0\} =\frac{2}{4} \cdot \frac{3}{5}=\frac{3}{10} P { X = 0 ⋅ Y = 0 } = 4 2  ⋅ 5 3  = 10 3  P { X = 1 , Y = 0 } = 2 4 ⋅ 2 5 = 2 10 \displaystyle P\{X=1, Y=0\}=\frac{2}{4} \cdot \frac{2}{5}=\frac{2}{10} P { X = 1 , Y = 0 } = 4 2  ⋅ 5 2  = 10 2  P { X = 0 ⋅ Y = 1 } = 2 4 ⋅ 2 5 = 2 10 \displaystyle P\{X=0 \cdot Y=1\}=\frac{2}{4} \cdot \frac{2}{5}=\frac{2}{10} P { X = 0 ⋅ Y = 1 } = 4 2  ⋅ 5 2  = 10 2  P { X = 1 , Y = 1 } = 2 4 ⋅ 3 5 = 3 10 \displaystyle P\{X=1, Y=1\}=\frac{2}{4} \cdot \frac{3}{5}=\frac{3}{10} P { X = 1 , Y = 1 } = 4 2  ⋅ 5 3  = 10 3   下面分别计算 X , Y X, Y X , Y   的分布律与数字特征.取球模型为等可能模型。 从甲盒中取到红球的概率X X X   的可能取值为 0,1 . 取到白球, 则 X = 0 X=0 X = 0  ; 取到红球, 则 X = 1 X=1 X = 1  . P { X = 0 } = 1 2 , P { X = 1 } = 1 2 . P\{X=0\}=\frac{1}{2}, \quad P\{X=1\}=\frac{1}{2} . P { X = 0 } = 2 1  , P { X = 1 } = 2 1  . E ( X ) = 0 × 1 2 + 1 × 1 2 = 1 2 E(X)=0 \times \frac{1}{2}+1 \times \frac{1}{2}=\frac{1}{2} E ( X ) = 0 × 2 1  + 1 × 2 1  = 2 1  E ( X 2 ) = 0 × 1 2 + 1 2 × 1 2 = 1 2 E(X^2)=0 \times \frac{1}{2}+1^2 \times \frac{1}{2}=\frac{1}{2} E ( X 2 ) = 0 × 2 1  + 1 2 × 2 1  = 2 1  D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = 1 2 − ( 1 2 ) 2 = 1 4 \displaystyle D(X)=E(X^2)-[E(X)]^2=\frac{1}{2}-\left(\frac{1}{2}\right)^2=\frac{1}{4} D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = 2 1  − ( 2 1  ) 2 = 4 1   从乙盒中取到红球的概率Y Y Y   的可能取值为 0,1 . 分析Y的概率 若从甲盒中取出的是白球, 则后来乙盒中共有 2 个红球和 3 个白球, 取到红球的概率为 2 5 \frac{2}{5} 5 2   , 即在 X = 0 X=0 X = 0   发生的条件下 Y = 1 Y=1 Y = 1   发生的概率为 2 5 \frac{2}{5} 5 2   ;  若从甲盒中取出的是红球, 则后来乙盒中共有 3 个红球和 2 个白球, 取到红球的概率为 3 5 \frac{3}{5} 5 3   , 即在 X = 1 X=1 X = 1   发生的条件下 Y = 1 Y=1 Y = 1   发生的概率为 3 5 \frac{3}{5} 5 3   .   P { Y = 0 } = 1 2 , P { Y = 1 } = 1 2 . \displaystyle P\{Y=0\}=\frac{1}{2}, \quad P\{Y=1\}=\frac{1}{2} . P { Y = 0 } = 2 1  , P { Y = 1 } = 2 1  . P { Y = 1 } = P { Y = 1 ∣ X = 0 } P { X = 0 } + P { Y = 1 ∣ X = 1 } P { X = 1 } \displaystyle P\{Y=1\} =P\{Y=1 \mid X=0\} P\{X=0\}+P\{Y=1 \mid X=1\} P\{X=1\} P { Y = 1 } = P { Y = 1 ∣ X = 0 } P { X = 0 } + P { Y = 1 ∣ X = 1 } P { X = 1 } = 2 5 × 1 2 + 3 5 × 1 2 = 1 2 \displaystyle =\frac{2}{5} \times \frac{1}{2}+\frac{3}{5} \times \frac{1}{2}=\frac{1}{2} = 5 2  × 2 1  + 5 3  × 2 1  = 2 1  P { Y = 0 } = 1 − P { Y = 1 } = 1 − 1 2 = 1 2 . P\{Y=0\}=1-P\{Y=1\}=1-\frac{1}{2}=\frac{1}{2} . P { Y = 0 } = 1 − P { Y = 1 } = 1 − 2 1  = 2 1  . 同理, E ( Y ) = 1 2 , E ( Y 2 ) = 1 2 , D ( Y ) = 1 2 − ( 1 2 ) 2 = 1 4 E(Y)=\frac{1}{2}, E\left(Y^2\right)=\frac{1}{2}, D(Y)=\frac{1}{2}-\left(\frac{1}{2}\right)^2=\frac{1}{4} E ( Y ) = 2 1  , E ( Y 2 ) = 2 1  , D ( Y ) = 2 1  − ( 2 1  ) 2 = 4 1   .  X Y X Y X Y   的可能取值为 0,1 P { X Y = 1 } = P { X = 1 , Y = 1 } = P { Y = 1 ∣ X = 1 } P { X = 1 } = 3 5 × 1 2 = 3 10 . \displaystyle P\{X Y=1\}=P\{X=1, Y=1\}=P\{Y=1 \mid X=1\} P\{X=1\}=\frac{3}{5} \times \frac{1}{2}=\frac{3}{10} . P { X Y = 1 } = P { X = 1 , Y = 1 } = P { Y = 1 ∣ X = 1 } P { X = 1 } = 5 3  × 2 1  = 10 3  . P { X Y = 0 } = 1 − 3 10 = 7 10 . \displaystyle P\{X Y=0\}=1-\frac{3}{10}=\frac{7}{10} . P { X Y = 0 } = 1 − 10 3  = 10 7  . 于是, E ( X Y ) = P { X Y = 1 } × 1 + P { X Y = 0 } × 0 E(X Y)=P\{X Y=1\} \times 1+P\{X Y=0\} \times 0 E ( X Y ) = P { X Y = 1 } × 1 + P { X Y = 0 } × 0 = 3 10 × 1 + 7 16 × 0 = 3 10 \displaystyle =\frac{3}{10} \times 1+\frac{7}{16} \times 0=\frac{3}{10} = 10 3  × 1 + 16 7  × 0 = 10 3    因此,ρ = E ( X Y ) − E ( X ) E ( Y ) D ( X ) D ( Y ) = 3 10 − 1 2 × 1 2 1 2 × 1 2 = 1 20 1 4 = 1 5 . \displaystyle \rho=\frac{E(X Y)-E(X) E(Y)}{\sqrt{D(X)} \sqrt{D(Y)}}=\frac{\frac{3}{10}-\frac{1}{2} \times \frac{1}{2}}{\frac{1}{2} \times \frac{1}{2}}=\frac{\frac{1}{20}}{\frac{1}{4}}=\frac{1}{5} . ρ = D ( X )  D ( Y )  E ( X Y ) − E ( X ) E ( Y )  = 2 1  × 2 1  10 3  − 2 1  × 2 1   = 4 1  20 1   = 5 1  .  三、解答题 (本题共 6 小题, 共 70 分, 解答应写出文字说明、证明过程或演算步骤.)
(17) (本题满分 10 分)  求极限 lim  x → 0 ( 1 + ∫ 0 x e t 2   d t e x − 1 − 1 sin  x ) \displaystyle \lim _{x \rightarrow 0}\left(\frac{1+\int_{0}^{x} \mathrm{e}^{t^{2}} \mathrm{~d} t}{\mathrm{e}^{x}-1}-\frac{1}{\sin x}\right) x → 0 lim  ( e x − 1 1 + ∫ 0 x  e t 2   d t  − sin x 1  )  .
(17) 原式 = lim  x → 0 sin  x + sin  x ∫ 0 x e t 2 d t − e x + 1 ( e x − 1 ) sin  x → e x − 1 ∼ x sin  x ∼ x } x 2 \displaystyle = \lim_{x \to 0} \frac{\sin x + \sin x \int_0^x e^{t^2} dt - e^x + 1}{ (e^x - 1) \sin x} \xrightarrow[]{\left.\begin{array}{l}e^x-1 \sim x \\\sin x \sim x\end{array}\right\} x^2} = x → 0 lim  ( e x − 1 ) sin x sin x + sin x ∫ 0 x  e t 2 d t − e x + 1  e x − 1 ∼ x sin x ∼ x  } x 2  = 乘法求导 洛必达 lim  x → 0 cos  x + cos  x ∫ 0 x e t 2 d t + sin  x ⋅ e x 2 − e x 2 x \displaystyle \xlongequal[\text{乘法求导}]{\text{洛必达}}\lim_{x \to 0} \frac{\cos x + \cos x \int_0^x e^{t^2} dt + \sin x \cdot e^{x^2} - e^x}{2x} 洛必达 乘法求导  x → 0 lim  2 x cos x + cos x ∫ 0 x  e t 2 d t + sin x ⋅ e x 2 − e x  = 就洛必达几次 分母有几次 lim  x → 0 − sin  x − sin  x ∫ 0 x e t 2 d t + cos  x ⋅ e x 2 + cos  x ⋅ e x 2 + sin  x ⋅ e x 2 ⋅ 2 x − e x 2 \displaystyle \xlongequal[\text{就洛必达几次}]{\text{分母有几次}} \lim_{x \to 0} \frac{-\sin x - \sin x \int_0^x e^{t^2} dt + \cos x \cdot e^{x^2} + \cos x \cdot e^{x^2} + \sin x \cdot e^{x^2} \cdot 2x - e^x}{2} 分母有几次 就洛必达几次  x → 0 lim  2 − sin x − sin x ∫ 0 x  e t 2 d t + cos x ⋅ e x 2 + cos x ⋅ e x 2 + sin x ⋅ e x 2 ⋅ 2 x − e x  = sin  0 = 0 , cos  0 = 1 1 2 . \displaystyle \xlongequal[]{\sin 0=0, \cos 0=1} \frac{1}{2}. s i n 0 = 0 , c o s 0 = 1  2 1  .  (18) (本题满分 12 分)  设 u n ( x ) = e − n x + x n + 1 n ( n + 1 ) ( n = 1 , 2 , ⋯   ) u_{n}(x)=\mathrm{e}^{-n x}+\frac{x^{n+1}}{n(n+1)}(n=1,2, \cdots) u n  ( x ) = e − n x + n ( n + 1 ) x n + 1  ( n = 1 , 2 , ⋯ )  , 求级数 ∑ n = 1 ∞ u n ( x ) \displaystyle \sum_{n=1}^{\infty} u_{n}(x) n = 1 ∑ ∞  u n  ( x )   的收敛域及和函数.
(18) 设 u n ( x ) = e − n x + x n + 1 n ( n + 1 ) \displaystyle u_n(x) = e^{-nx} + \frac{x^{n+1}}{n(n+1)} u n  ( x ) = e − n x + n ( n + 1 ) x n + 1   (n = 1 , 2 , ⋯ \displaystyle n = 1, 2, \cdots n = 1 , 2 , ⋯  ),求级数 ∑ n = 1 ∞ u n ( x ) \displaystyle \sum_{n=1}^{\infty} u_n(x) n = 1 ∑ ∞  u n  ( x )   的收敛域及和函数。 S ( x ) = ∑ n = 1 ∞ [ e − n x + 1 n ( n + 1 ) x n + 1 ] \displaystyle S(x) = \sum_{n=1}^{\infty} \left[ e^{-nx} + \frac{1}{n(n+1)} x^{n+1} \right] S ( x ) = n = 1 ∑ ∞  [ e − n x + n ( n + 1 ) 1  x n + 1 ] = ∑ n = 1 ∞ e − n x + ∑ n = 1 ∞ 1 n ( n + 1 ) x n + 1 \displaystyle = \sum_{n=1}^{\infty} e^{-nx} + \sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^{n+1} = n = 1 ∑ ∞  e − n x + n = 1 ∑ ∞  n ( n + 1 ) 1  x n + 1 求收敛域 ∑ n = 1 ∞ e − n x = e − x + e − 2 x + ⋯ + e − n x + ⋯ = e − x 1 − e − x , − 1 < e − x < 1 , \displaystyle \sum_{n=1}^{\infty} e^{-nx} = e^{-x} + e^{-2x} + \cdots + e^{-nx} + \cdots = \frac{e^{-x}}{1 - e^{-x}}, \quad -1 < e^{-x} < 1, n = 1 ∑ ∞  e − n x = e − x + e − 2 x + ⋯ + e − n x + ⋯ = 1 − e − x e − x  , − 1 < e − x < 1 ,  即x > 0. x > 0. x > 0. 而∑ n = 1 ∞ x n + 1 n ( n + 1 ) , \displaystyle \sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)}, n = 1 ∑ ∞  n ( n + 1 ) x n + 1  ,  因为lim  n → ∞ a n + 1 a n = lim  n → ∞ n ( n + 1 ) ( n + 1 ) ( n + 2 ) = 1 , \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n(n+1)}{(n+1)(n+2)} = 1, lim n → ∞  a n  a n + 1   = lim n → ∞  ( n + 1 ) ( n + 2 ) n ( n + 1 )  = 1 ,  于是R = 1. R = 1. R = 1. 又 x = 1 \displaystyle x = 1 x = 1   和 x = − 1 \displaystyle x = -1 x = − 1   时,∑ n = 1 ∞ 1 n ( n + 1 ) \displaystyle \sum_{n=1}^{\infty} \frac{1}{n(n+1)} n = 1 ∑ ∞  n ( n + 1 ) 1    和 ∑ n = 1 ∞ ( − 1 ) n + 1 n ( n + 1 ) \displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} n = 1 ∑ ∞  n ( n + 1 ) ( − 1 ) n + 1    都收敛, 所以 ∑ n = 1 ∞ x n + 1 n ( n + 1 ) \displaystyle \sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)} n = 1 ∑ ∞  n ( n + 1 ) x n + 1    的收敛域为 [ − 1 , 1 ] [-1, 1 ] [ − 1 , 1 ]   所以级数 ∑ n = 1 ∞ u n ( x ) \displaystyle \sum_{n=1}^{\infty} u_n(x) n = 1 ∑ ∞  u n  ( x )   的收敛域为 ( 0 , 1 ] \displaystyle (0,1] ( 0 , 1 ]  。令 S ( x ) = ∑ n = 1 ∞ x n + 1 n ( n + 1 ) \displaystyle S(x) = \sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)} S ( x ) = n = 1 ∑ ∞  n ( n + 1 ) x n + 1   ,0 < x ≤ 1 \displaystyle 0 < x \leq 1 0 < x ≤ 1  。  求和函数S ( x ) = ∑ n = 1 ∞ e − n x + ∑ n = 1 ∞ 1 n ( n + 1 ) x n + 1 \displaystyle S(x)= \sum_{n=1}^{\infty} e^{-nx} + \sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^{n+1} S ( x ) = n = 1 ∑ ∞  e − n x + n = 1 ∑ ∞  n ( n + 1 ) 1  x n + 1 第一部分 ∑ n = 1 ∞ e − n x = ∑ n = 1 ∞ t n , − 1 < t < 1 → ∑ n = 0 ∞ x n = 1 1 − x e − x 1 − e − x \displaystyle \sum_{n=1}^{\infty} e^{-nx} = \sum_{n=1}^{\infty} t^n, \quad -1 < t < 1 \xrightarrow[]{\sum_{n=0}^{\infty} x^n=\frac{1}{1-x}}\frac{e^{-x}}{1 - e^{-x}} n = 1 ∑ ∞  e − n x = n = 1 ∑ ∞  t n , − 1 < t < 1 ∑ n = 0 ∞  x n = 1 − x 1   1 − e − x e − x   第二部分 逐项求导 当 0 < x < 1 \displaystyle 0 < x < 1 0 < x < 1   时,S ′ ( x ) = ∑ n = 1 ∞ x n n = − ln  ( 1 − x ) \displaystyle S'(x) = \sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x) S ′ ( x ) = n = 1 ∑ ∞  n x n  = − ln ( 1 − x )  , 因 ln  ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x n n \displaystyle \ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} ln ( 1 + x ) = n = 1 ∑ ∞  n ( − 1 ) n − 1 x n   ,− 1 < x < 1 \displaystyle -1 < x < 1 − 1 < x < 1  。  逐项积分 \displaystyle  于是S ( x ) = ∫ 0 x − ln  ( 1 − t )   d t + S ( 0 ) = − t ln  ( 1 − t ) ∣ 0 x + ∫ 0 x t ⋅ − 1 1 − t   d t + 0 S(x) = \int_0^x -\ln(1-t) \, dt + S(0) = -t\ln(1-t) \bigg|_0^x + \int_0^x t \cdot \frac{-1}{1-t} \, dt + 0 S ( x ) = ∫ 0 x  − ln ( 1 − t ) d t + S ( 0 ) = − t ln ( 1 − t )  0 x  + ∫ 0 x  t ⋅ 1 − t − 1  d t + 0 = − x ln  ( 1 − x ) + ∫ 0 x 1 − t − 1 1 − t   d t = − x ln  ( 1 − x ) + x + ln  ( 1 − x ) . \displaystyle = -x\ln(1-x) + \int_0^x \frac{1-t-1}{1-t} \, dt = -x\ln(1-x) + x + \ln(1-x). = − x ln ( 1 − x ) + ∫ 0 x  1 − t 1 − t − 1  d t = − x ln ( 1 − x ) + x + ln ( 1 − x ) .    补点:而 S ( x ) \displaystyle S(x) S ( x )   在收敛域上是连续的,于是 S ( 1 ) = lim  x → 1 S ( x ) \displaystyle S(1) = \lim_{x \to 1} S(x) S ( 1 ) = x → 1 lim  S ( x ) = lim  x → 1 − [ − x ln  ( 1 − x ) + x + ln  ( 1 − x ) ] \displaystyle = \lim_{x \to 1^-} \left[ -x\ln(1-x) + x + \ln(1-x) \right] = x → 1 − lim  [ − x ln ( 1 − x ) + x + ln ( 1 − x ) ] = lim  x → 1 − ( 1 − x ) ⏟ = 0 ln  ( 1 − x ) + 1 \displaystyle = \lim_{x \to 1^-} \underbrace{(1-x)}_{=0}\ln(1-x) + 1 = x → 1 − lim  = 0 ( 1 − x )   ln ( 1 − x ) + 1 (令 1 − x = t \displaystyle 1-x = t 1 − x = t  ) = lim  t → 0 + t ln  t + 1 = 0 + 1 = 1 \displaystyle = \lim_{t \to 0^+} t\ln t + 1 = 0 + 1 = 1 = t → 0 + lim  t ln t + 1 = 0 + 1 = 1  。  综上可知,级数 ∑ n = 1 ∞ u n ( x ) \displaystyle \sum_{n=1}^{\infty} u_n(x) n = 1 ∑ ∞  u n  ( x )   的和函数为 { e − x 1 − e − x − x ln  ( 1 − x ) + x + ln  ( 1 − x ) , 0 < x < 1 , e − 1 1 − e − 1 + 1 , x = 1. \displaystyle \begin{cases}\frac{e^{-x}}{1-e^{-x}} - x\ln(1-x) + x + \ln(1-x), 0 < x < 1, \\\frac{e^{-1}}{1-e^{-1}} + 1, x = 1.\end{cases} { 1 − e − x e − x  − x ln ( 1 − x ) + x + ln ( 1 − x ) , 0 < x < 1 , 1 − e − 1 e − 1  + 1 , x = 1.   小猪佩奇 1 n ⋅ ( n + 1 ) = 1 n − 1 n + 1 \displaystyle \frac{1}{n \cdot (n+1)} = \frac{1}{n} - \frac{1}{n+1} n ⋅ ( n + 1 ) 1  = n 1  − n + 1 1  ∑ n = 1 ∞ 1 n ( n + 1 ) x n + 1 \displaystyle \sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^{n+1} n = 1 ∑ ∞  n ( n + 1 ) 1  x n + 1 = 裂项 ∑ n = 1 ∞ [ x n + 1 n − 1 n + 1 x n + 1 ] \displaystyle \xlongequal[]{\text{裂项}}\sum_{n=1}^{\infty} \left[ \frac{x^{n+1}}{n} - \frac{1}{n+1} x^{n+1} \right] 裂项  n = 1 ∑ ∞  [ n x n + 1  − n + 1 1  x n + 1 ] = 向分母看齐 x ∑ n = 1 ∞ x n n − ∑ n = 1 ∞ x n + 1 n + 1 \displaystyle \xlongequal[]{\text{向分母看齐}}x \sum_{n=1}^{\infty} \frac{x^n}{n} - \sum_{n=1}^{\infty} \frac{x^{n+1}}{n+1} 向分母看齐  x n = 1 ∑ ∞  n x n  − n = 1 ∑ ∞  n + 1 x n + 1  = 套公式 x ⋅ [ − ln  ( 1 − x ) ] + ln  ( 1 − x ) + x \displaystyle \xlongequal[]{\text{套公式}} x \cdot[-\ln(1-x)] + \ln(1-x) + x 套公式  x ⋅ [ − ln ( 1 − x )] + ln ( 1 − x ) + x = 合并同类项 ( 1 − x ) ⋅ ln  ( 1 − x ) + x \displaystyle \xlongequal[]{\text{合并同类项}} (1-x) \cdot \ln(1-x) + x 合并同类项  ( 1 − x ) ⋅ ln ( 1 − x ) + x (19) (本题满分 12 分)  已知曲线 C : { x 2 + 2 y 2 − z = 6 , 4 x + 2 y + z = 30 , \displaystyle C:\left\{\begin{array}{l}x^{2}+2 y^{2}-z=6, \\ 4 x+2 y+z=30,\end{array}\right. C : { x 2 + 2 y 2 − z = 6 , 4 x + 2 y + z = 30 ,    求 C C C   上的点到 x O y x O y x O y   坐标面距离的最大值.
(19) 分析 本题可以利用拉格朗日乘数法求解.点 ( x , y , z ) (x, y, z) ( x , y , z )   到 x O y x O y x O y   面的距离为 ∣ z ∣ |z| ∣ z ∣   ,故目标函数可设为 z 2 z^2 z 2   。本题中的约束条件为点 ( x , y , z ) (x, y, z) ( x , y , z )   落在曲线 C C C   上,故约束条件有两个等式. → 建立拉格朗日函数 L ( x , y , z , λ , μ ) = ∣ z ∣ + λ ( x 2 + 2 y 2 − z − 6 ) + μ ( 4 x + 2 y + z − 30 ) \xrightarrow[]{\text{建立拉格朗日函数}}L(x, y, z, \lambda, \mu)=|z|+\lambda\left(x^2+2 y^2-z-6\right)+\mu(4 x+2 y+z-30) 建立拉格朗日函数  L ( x , y , z , λ , μ ) = ∣ z ∣ + λ ( x 2 + 2 y 2 − z − 6 ) + μ ( 4 x + 2 y + z − 30 ) → 绝对值变成平方 L ( x , y , z , λ , μ ) = z 2 + λ ( x 2 + 2 y 2 − z − 6 ) + μ ( 4 x + 2 y + z − 30 ) \displaystyle \begin{aligned} \xrightarrow[]{\text{绝对值变成平方}} L(x, y, z, \lambda, \mu)=z^2+\lambda\left(x^2+2 y^2-z-6\right)+\mu(4 x+2 y+z-30) \end{aligned} 绝对值变成平方  L ( x , y , z , λ , μ ) = z 2 + λ ( x 2 + 2 y 2 − z − 6 ) + μ ( 4 x + 2 y + z − 30 )  { ( 1 ) L x = 2 λ x + 4 μ = 0 ( 2 ) L y = 4 λ y + 2 μ = 0 ( 3 ) L z = 2 z − λ + μ = 0 ( 4 ) L λ = x 2 + 2 y 2 − z − 6 = 0 ( 5 ) L μ = 4 x + 2 y + z − 30 = 0 \displaystyle \begin{aligned} \left\{\begin{array}{l}(1)L_x=2 \lambda x+4 \mu=0 \\(2)L_y=4 \lambda y+2 \mu=0 \\(3)L_z=2 z-\lambda+\mu=0 \\(4)L_\lambda=x^2+2 y^2-z-6=0 \\(5)L_\mu=4 x+2 y+z-30=0\end{array}\right. \end{aligned} ⎩ ⎨ ⎧  ( 1 ) L x  = 2 λ x + 4 μ = 0 ( 2 ) L y  = 4 λ y + 2 μ = 0 ( 3 ) L z  = 2 z − λ + μ = 0 ( 4 ) L λ  = x 2 + 2 y 2 − z − 6 = 0 ( 5 ) L μ  = 4 x + 2 y + z − 30 = 0   gpt版 转化问题:求 C C C   上点到 x O y xOy x O y   面的距离,实际上是求 z z z   坐标的最大值。 曲线 C C C   的方程组为 { x 2 + 2 y 2 − z = 6 , 4 x + 2 y + z = 30 } \{x^2 + 2y^2 - z = 6, 4x + 2y + z = 30\} { x 2 + 2 y 2 − z = 6 , 4 x + 2 y + z = 30 }  。  构造拉格朗日函数 L ( x , y , z , λ , μ ) L(x, y, z, \lambda, \mu) L ( x , y , z , λ , μ )  。 L ( x , y , z , λ , μ ) = z + λ ( 4 x + 2 y + z − 30 ) + μ ( x 2 + 2 y 2 − z − 6 ) L(x, y, z, \lambda, \mu) = z + \lambda(4x + 2y + z - 30) + \mu(x^2 + 2y^2 - z - 6) L ( x , y , z , λ , μ ) = z + λ ( 4 x + 2 y + z − 30 ) + μ ( x 2 + 2 y 2 − z − 6 )  。 消元法求解驻点:对 L L L   求偏导并令其等于零。 ∂ L ∂ x = 4 λ + 2 μ x = 0 \frac{\partial L}{\partial x} = 4\lambda + 2\mu x = 0 ∂ x ∂ L  = 4 λ + 2 μx = 0  。∂ L ∂ y = 2 λ + 4 μ y = 0 \frac{\partial L}{\partial y} = 2\lambda + 4\mu y = 0 ∂ y ∂ L  = 2 λ + 4 μ y = 0  。∂ L ∂ z = 1 + λ − μ = 0 \frac{\partial L}{\partial z} = 1 + \lambda - \mu = 0 ∂ z ∂ L  = 1 + λ − μ = 0  。∂ L ∂ λ = 4 x + 2 y + z − 30 = 0 \frac{\partial L}{\partial \lambda} = 4x + 2y + z - 30 = 0 ∂ λ ∂ L  = 4 x + 2 y + z − 30 = 0  。∂ L ∂ μ = x 2 + 2 y 2 − z − 6 = 0 \frac{\partial L}{\partial \mu} = x^2 + 2y^2 - z - 6 = 0 ∂ μ ∂ L  = x 2 + 2 y 2 − z − 6 = 0  。 消元法求解驻点的坐标。 解得两组解:( x , y , z ) = ( 4 , 1 , 12 ) (x, y, z) = (4, 1, 12) ( x , y , z ) = ( 4 , 1 , 12 )   和 ( − 8 , − 2 , 66 ) (-8, -2, 66) ( − 8 , − 2 , 66 )  。  确定最大值。  (20) 设 D ⊂ R 2 D \subset \mathbf{R}^{2} D ⊂ R 2   是有界单连通闭区域, I ( D ) = ∬ D ( 4 − x 2 − y 2 ) d x   d y I(D)=\iint_{D}\left(4-x^{2}-y^{2}\right) \mathrm{d} x \mathrm{~d} y I ( D ) = ∬ D  ( 4 − x 2 − y 2 ) d x   d y   取得最大值的积 分区域记为 D 1 D_{1} D 1   .  (I) 求 I ( D 1 ) I\left(D_{1}\right) I ( D 1  )   的值;  (II) 计算 ∫ ∂ D 1 ( x e x 2 + 4 y 2 + y ) d x + ( 4 y e x 2 + 4 y 2 − x ) d y x 2 + 4 y 2 \displaystyle \int_{\partial D_{1}} \frac{\left(x \mathrm{e}^{x^{2}+4 y^{2}}+y\right) \mathrm{d} x+\left(4 y \mathrm{e}^{x^{2}+4 y^{2}}-x\right) \mathrm{d} y}{x^{2}+4 y^{2}} ∫ ∂ D 1   x 2 + 4 y 2 ( x e x 2 + 4 y 2 + y ) d x + ( 4 y e x 2 + 4 y 2 − x ) d y   , 其中 ∂ D 1 \partial D_{1} ∂ D 1    是 D 1 D_{1} D 1    的正向边界.
(20) (1)区域 D 1 \displaystyle D_1 D 1    应当可以使被积函数 f ( x , y ) = 4 − x 2 − y 2 ≥ 0 \displaystyle f(x, y) = 4 - x^2 - y^2 \geq 0 f ( x , y ) = 4 − x 2 − y 2 ≥ 0  , 且 D 1 \displaystyle D_1 D 1    之外还必须可以使被积函数 f ( x , y ) = 4 − x 2 − y 2 < 0 \displaystyle f(x, y) = 4 - x^2 - y^2 < 0 f ( x , y ) = 4 − x 2 − y 2 < 0  。 所以 D 1 = { ( x , y ) ∣ x 2 + y 2 ≤ 4 } \displaystyle D_1 = \{(x, y) | x^2 + y^2 \leq 4\} D 1  = {( x , y ) ∣ x 2 + y 2 ≤ 4 }  。  I ( D 1 ) = ∬ D 1 ( 4 − x 2 − y 2 )   d x   d y = ∫ 0 2 π d θ ∫ 0 2 ( 4 − r 2 ) r   d r = ( 2 r 2 − r 4 4 ) ∣ 0 2 = 8 − 4 = 4 8 π . \displaystyle I(D_1) = \iint_{D_1} (4 - x^2 - y^2) \, dx \, dy = \int_0^{2\pi} d\theta \int_0^2 (4 - r^2) r \, dr \xlongequal[]{\left.\left(2 r^2-\frac{r^4}{4}\right)\right|_0 ^2=8-4=4}8\pi. I ( D 1  ) = ∬ D 1   ( 4 − x 2 − y 2 ) d x d y = ∫ 0 2 π  d θ ∫ 0 2  ( 4 − r 2 ) r d r ( 2 r 2 − 4 r 4  )  0 2  = 8 − 4 = 4  8 π . (2) 记所求积分为 I , P ( x , y ) = x e x 2 + 4 y 2 + y x 2 + 4 y 2 , Q ( x , y ) = 4 y e x 2 + 4 y 2 − x x 2 + 4 y 2 I, P(x, y)=\frac{x \mathrm{e}^{x^2+4 y^2}+y}{x^2+4 y^2}, Q(x, y)=\frac{4 y \mathrm{e}^{x^2+4 y^2}-x}{x^2+4 y^2} I , P ( x , y ) = x 2 + 4 y 2 x e x 2 + 4 y 2 + y  , Q ( x , y ) = x 2 + 4 y 2 4 y e x 2 + 4 y 2 − x   ,  则当 ( x , y ) ≠ ( 0 , 0 ) (x, y) \neq(0,0) ( x , y )  = ( 0 , 0 )   时, ∂ Q ∂ x = ( 8 x y e x 2 + 4 y 2 − 1 ) ( x 2 + 4 y 2 ) − ( 4 y e x 2 + 4 y 2 − x ) ⋅ 2 x ( x 2 + 4 y 2 ) 2 = ∂ P ∂ y \displaystyle \frac{\partial Q}{\partial x} =\frac{\left(8 x y \mathrm{e}^{x^2+4 y^2}-1\right)\left(x^2+4 y^2\right)-\left(4 y \mathrm{e}^{x^2+4 y^2}-x\right) \cdot 2 x}{\left(x^2+4 y^2\right)^2} =\frac{\partial P}{\partial y} ∂ x ∂ Q  = ( x 2 + 4 y 2 ) 2 ( 8 x y e x 2 + 4 y 2 − 1 ) ( x 2 + 4 y 2 ) − ( 4 y e x 2 + 4 y 2 − x ) ⋅ 2 x  = ∂ y ∂ P  于是, ∂ Q ∂ x = ∂ P ∂ y \displaystyle \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} ∂ x ∂ Q  = ∂ y ∂ P    挖点用格林由格林公式,∮ L P d x + Q d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d σ \displaystyle \begin{aligned}\oint_L P d x+Q d y=\iint_D\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d \sigma\end{aligned} ∮ L  P d x + Q d y = ∬ D  ( ∂ x ∂ Q  − ∂ y ∂ P  ) d σ  挖点前的全部区域:∮ L + L ′ ( x e x 2 + 4 y 2 + y ) d x + ( 4 y e x 2 + 4 y 2 − x ) d y x 2 + 4 y 2 =  格林公式  ∬ D 1 \ D 0 0   d x   d y = 0 , \displaystyle \oint_{L+L^{\prime}} \frac{\left(x \mathrm{e}^{x^2+4 y^2}+y\right) \mathrm{d} x+\left(4 y \mathrm{e}^{x^2+4 y^2}-x\right) \mathrm{d} y}{x^2+4 y^2} \xlongequal{\text{ 格林公式 }} \iint_{D_1 \backslash D_0} 0 \mathrm{~d} x \mathrm{~d} y=0, ∮ L + L ′  x 2 + 4 y 2 ( x e x 2 + 4 y 2 + y ) d x + ( 4 y e x 2 + 4 y 2 − x ) d y    格林公式   ∬ D 1  \ D 0   0   d x   d y = 0 ,   挖点后的区域∮ L = ∮ L + L ′ ‾ − ∮ L ′ 内 \displaystyle \oint_{L} =\underline{\oint_{L+L'}}-\oint_{L^{'\text{内}}} ∮ L  = ∮ L + L ′   − ∮ L ′ 内  = 0 + ∮ L ′ 外 \displaystyle =0+\oint_{L^{'\text{外}}} = 0 + ∮ L ′ 外  = ∮ L ′ - ( x e x 2 + 4 y 2 + y ) d x + ( 4 y e x 2 + 4 y 2 − x ) d y x 2 + 4 y 2 \displaystyle =\oint_{L^{\prime\text{-}}} \frac{\left(x \mathrm{e}^{x^2+4 y^2}+y\right) \mathrm{d} x+\left(4 y \mathrm{e}^{x^2+4 y^2}-x\right) \mathrm{d} y}{x^2+4 y^2} = ∮ L ′ -  x 2 + 4 y 2 ( x e x 2 + 4 y 2 + y ) d x + ( 4 y e x 2 + 4 y 2 − x ) d y  = x 2 + 4 y 2 = ε 2 ε 2 ∮ L ′ ( x e ε 2 + y ) d x + ( 4 y e ε 2 − x ) d y \displaystyle \xlongequal[x^2+4 y^2=\varepsilon^2]{\varepsilon^2} \oint_{L^{\prime}}\left(x \mathrm{e}^{\varepsilon^2}+y\right) \mathrm{d} x+\left(4 y \mathrm{e}^{\varepsilon^2}-x\right) \mathrm{d} y ε 2 x 2 + 4 y 2 = ε 2  ∮ L ′  ( x e ε 2 + y ) d x + ( 4 y e ε 2 − x ) d y =  格林公式  1 ε 2 ∬ D 0 [ ∂ Q ∂ x − ∂ P ∂ y ] d x   d y = 1 ε 2 ∬ D 0 ( − 1 − 1 ) d x   d y \displaystyle \xlongequal{\text{ 格林公式 }} \frac{1}{\varepsilon^2} \iint_{D_0}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] \mathrm{d} x \mathrm{~d} y=\frac{1}{\varepsilon^2} \iint_{D_0}(-1-1) \mathrm{d} x \mathrm{~d} y   格林公式   ε 2 1  ∬ D 0   [ ∂ x ∂ Q  − ∂ y ∂ P  ] d x   d y = ε 2 1  ∬ D 0   ( − 1 − 1 ) d x   d y = − 2 ε 2 ⋅ D 0 \displaystyle =-\frac{2}{\varepsilon^2} \cdot D_0 = − ε 2 2  ⋅ D 0   的面积= π a b − 2 ε 2 × π × ε × ε 2 = − π . \xlongequal[]{\pi ab}-\frac{2}{\varepsilon^2} \times \pi \times \varepsilon \times \frac{\varepsilon}{2}=-\pi . πab  − ε 2 2  × π × ε × 2 ε  = − π .   2000 年数一试题 计算曲线积分 I = ∮ L x   d y − y   d x 4 x 2 + y 2 I=\oint_L \frac{x \mathrm{~d} y-y \mathrm{~d} x}{4 x^2+y^2} I = ∮ L  4 x 2 + y 2 x   d y − y   d x    ,其中 L L L   是以点 ( 1 , 0 ) (1,0) ( 1 , 0 )   为中心, R R R   为半径的圆周 ( R > 1 ) (R>1) ( R > 1 )  , 取逆时针方向.  2020 年数一试题 计算曲线积分 I = ∮ L 4 x − y 4 x 2 + y 2   d x + x + y 4 x 2 + y 2   d y I=\oint_L \frac{4 x-y}{4 x^2+y^2} \mathrm{~d} x+\frac{x+y}{4 x^2+y^2} \mathrm{~d} y I = ∮ L  4 x 2 + y 2 4 x − y    d x + 4 x 2 + y 2 x + y    d y  , 其中 L L L   为 x 2 + y 2 = 2 x^2+y^2=2 x 2 + y 2 = 2  , 方向为逆时针方向.  (21) (本题满分 12 分)  已知 A = ( a 1 − 1 1 a − 1 − 1 − 1 a ) \displaystyle \boldsymbol{A}=\left(\begin{array}{ccc}a & 1 & -1 \\ 1 & a & -1 \\ -1 & -1 & a\end{array}\right) A =  a 1 − 1  1 a − 1  − 1 − 1 a    .  ( I ) 求正交矩阵 P \boldsymbol{P} P  ,使得 P T A P \boldsymbol{P}^{\mathrm{T}} \boldsymbol{A P} P T AP   为对角矩阵;  (II) 求正定矩阵 C \boldsymbol{C} C  ,使得 C 2 = ( a + 3 ) E − A \boldsymbol{C}^{2}=(a+3) \boldsymbol{E}-\boldsymbol{A} C 2 = ( a + 3 ) E − A  , 其中 E \boldsymbol{E} E   为 3 阶单位矩阵.
(21) 解 (1) ∣ A − λ E ∣ = ∣ a − λ 1 − 1 1 a − λ − 1 − 1 − 1 a − λ ∣ = c 1 + c 3 ∣ a − λ − 1 1 − 1 0 a − λ − 1 a − λ − 1 − 1 a − λ ∣ \displaystyle |A-\lambda E|=\left|\begin{array}{ccc}a-\lambda & 1 & -1 \\ 1 & a-\lambda & -1 \\ -1 & -1 & a-\lambda\end{array}\right|\xlongequal[]{c1+c3}\left|\begin{array}{ccc}a-\lambda-1 & 1 & -1 \\ 0 & a-\lambda & -1 \\ a-\lambda-1 & -1 & a-\lambda\end{array}\right| ∣ A − λ E ∣ =  a − λ 1 − 1  1 a − λ − 1  − 1 − 1 a − λ   c 1 + c 3   a − λ − 1 0 a − λ − 1  1 a − λ − 1  − 1 − 1 a − λ   = r 3 − r 1 ∣ a − λ − 1 1 − 1 0 a − λ − 1 0 − 2 a − λ + 1 ∣ \displaystyle \begin{aligned} \xlongequal[]{r3-r1}\left|\begin{array}{ccc}a-\lambda-1 & 1 & -1 \\0 & a-\lambda & -1 \\0 & -2 & a-\lambda+1\end{array}\right| \end{aligned} r 3 − r 1   a − λ − 1 0 0  1 a − λ − 2  − 1 − 1 a − λ + 1    = 按第一列展开 ( a − λ − 1 ) [ ( a − λ ) ( a − λ + 1 ) − 2 ] \displaystyle \begin{aligned} \xlongequal[]{\text{按第一列展开}}(a-\lambda-1)[(a-\lambda)(a-\lambda+1)-2]\end{aligned} 按第一列展开  ( a − λ − 1 ) [( a − λ ) ( a − λ + 1 ) − 2 ]  = ( a − λ − 1 ) [ ( a − λ ) 2 + ( a − λ ) − 2 ] \displaystyle \begin{aligned}=(a-\lambda-1)\left[(a-\lambda)^2+(a-\lambda)-2\right]\end{aligned} = ( a − λ − 1 ) [ ( a − λ ) 2 + ( a − λ ) − 2 ]  = t + 2 t − 1 ( a − λ − 1 ) [ a − λ + 2 ] [ a − λ − 1 ] \displaystyle \begin{aligned} \xlongequal[]{\begin{aligned}& t+2 \\& t-1\end{aligned}}(a-\lambda-1)[a-\lambda+2][a-\lambda-1] \end{aligned}  t + 2 t − 1   ( a − λ − 1 ) [ a − λ + 2 ] [ a − λ − 1 ]  λ 1 = λ 2 = a − 1. λ 3 = a + 2 \lambda_1=\lambda_2=a-1 . \quad \lambda_3=a+2 λ 1  = λ 2  = a − 1. λ 3  = a + 2 当二重根λ = a − 1 \displaystyle \begin{aligned} \begin{gathered}\lambda=a-1 \end{gathered} \end{aligned} λ = a − 1    ,( A − ( a − 1 ) E ) x = 0 \displaystyle \begin{aligned}(A-(a-1) E) x=0 \end{aligned} ( A − ( a − 1 ) E ) x = 0  ( 1 1 − 1 1 1 − 1 − 1 − 1 1 ) → 2 , 3 两行成比例 ( 1 1 − 1 0 0 0 0 0 0 ) \displaystyle \begin{aligned}\left(\begin{array}{ccc}1 & 1 & -1 \\1 & 1 & -1 \\-1 & -1 & 1\end{array}\right) \xrightarrow[]{2\text{,}3\text{两行成比例}}\left(\begin{array}{ccc}1 & 1 & -1 \\0 & 0 & 0 \\0 & 0 & 0\end{array}\right)\end{aligned}  1 1 − 1  1 1 − 1  − 1 − 1 1   2 , 3 两行成比例   1 0 0  1 0 0  − 1 0 0    x = k 1 ( − 1 1 0 ) + k 2 ( 1 0 1 ) \displaystyle x=k_1\left(\begin{array}{c}-1 \\1 \\0\end{array}\right)+k_2\left(\begin{array}{l}1 \\0 \\1\end{array}\right) x = k 1   − 1 1 0   + k 2   1 0 1     , k 1 k_1 k 1    k 2 k_2 k 2   不全为0 0 0  \displaystyle  当λ = a + 2 \lambda=a+2 λ = a + 2  ,( A − ( a + 2 ) E ) x = 0 (A-(a+2) E) x=0 ( A − ( a + 2 ) E ) x = 0 → ( − 2 1 − 1 1 − 2 − 1 − 1 − 1 − 2 ) → 行互换化简 ( 1 1 2 1 − 2 − 1 − 2 1 − 1 ) \displaystyle \begin{aligned} \xrightarrow[]{} \left(\begin{array}{ccc}-2 & 1 & -1 \\1 & -2 & -1 \\-1 & -1 & -2\end{array}\right) \xrightarrow[]{\text{行互换化简}}\left(\begin{array}{ccc}1 & 1 & 2 \\1 & -2 & -1 \\-2 & 1 & -1\end{array}\right) \end{aligned}   − 2 1 − 1  1 − 2 − 1  − 1 − 1 − 2   行互换化简   1 1 − 2  1 − 2 1  2 − 1 − 1    → r 2 − r 1 r 3 + 2 r 1 ( 1 1 2 0 − 3 − 3 0 3 3 ) → 2 , 3 两行成比例 ( 1 0 1 0 1 1 0 0 0 ) \displaystyle \begin{aligned}\xrightarrow[]{\begin{aligned}& r_2-r_1 \\& r_3+2 r_1\end{aligned}}\left(\begin{array}{ccc}1 & 1 & 2 \\0 & -3 & -3 \\0 & 3 & 3\end{array}\right) \xrightarrow[]{2\text{,}3\text{两行成比例}}\left(\begin{array}{lll}1 & 0 & 1 \\0 & 1 & 1 \\0 & 0 & 0\end{array}\right)\end{aligned}  r 2  − r 1  r 3  + 2 r 1     1 0 0  1 − 3 3  2 − 3 3   2 , 3 两行成比例   1 0 0  0 1 0  1 1 0    ∴ x = k 3 ( − 1 − 1 1 ) \displaystyle \begin{aligned} \therefore x=k_3\left(\begin{array}{c}-1 \\-1 \\1\end{array}\right)\end{aligned} ∴ x = k 3   − 1 − 1 1    先施密特正交化 β 1 = ξ 1 = ( − 1 1 0 ) , \displaystyle \begin{aligned} \boldsymbol{\beta}_1=\boldsymbol{\xi}_1=\left(\begin{array}{c}-1 \\1 \\0\end{array}\right), \end{aligned} β 1  = ξ 1  =  − 1 1 0   ,  β 2 = ξ 2 − ( β 1 , ξ 2 ) ∥ β 1 ∥ 2 β 1 = ( 1 0 1 ) − ( − 1 ) 2 ( − 1 1 0 ) = 1 2 ( 1 1 2 ) , \displaystyle \begin{aligned} \boldsymbol{\beta}_2=\boldsymbol{\xi}_2-\frac{\left(\boldsymbol{\beta}_1, \boldsymbol{\xi}_2\right)}{\left\|\boldsymbol{\beta}_1\right\|^2} \boldsymbol{\beta}_1=\left(\begin{array}{l}1 \\0 \\1\end{array}\right)-\frac{(-1)}{2}\left(\begin{array}{c}-1 \\1 \\0\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}1 \\1 \\2\end{array}\right), \end{aligned} β 2  = ξ 2  − ∥ β 1  ∥ 2 ( β 1  , ξ 2  )  β 1  =  1 0 1   − 2 ( − 1 )   − 1 1 0   = 2 1   1 1 2   ,  β 3 = ξ 3 = ( − 1 − 1 1 ) \displaystyle \begin{aligned} \boldsymbol{\beta}_3=\boldsymbol{\xi}_3=\left(\begin{array}{c}-1 \\-1 \\1\end{array}\right)\end{aligned} β 3  = ξ 3  =  − 1 − 1 1    实对称矩阵不同特征值的特征向量相互正交,β 3 \boldsymbol{\beta}_3 β 3   不用算了   将  β 1 , β 2 , β 3  单位化.  \displaystyle \begin{aligned} \text { 将 } \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3 \text { 单位化. } \end{aligned}   将   β 1  , β 2  , β 3    单位化 .   ε 1 = β 1 ∥ β 1 ∥ = 1 2 ( − 1 1 0 ) , \displaystyle \begin{aligned} \boldsymbol{\varepsilon}_1=\frac{\boldsymbol{\beta}_1}{\left\|\boldsymbol{\beta}_1\right\|}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}-1 \\1 \\0\end{array}\right), \end{aligned} ε 1  = ∥ β 1  ∥ β 1   = 2  1   − 1 1 0   ,  ε 2 = β 2 ∥ β 2 ∥ = 1 6 ( 1 1 2 ) \displaystyle \begin{aligned}\boldsymbol{\varepsilon}_2=\frac{\boldsymbol{\beta}_2}{\left\|\boldsymbol{\beta}_2\right\|}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}1 \\1 \\2\end{array}\right)\end{aligned} ε 2  = ∥ β 2  ∥ β 2   = 6  1   1 1 2    ε 3 = β 3 ∥ β 3 ∥ = 1 3 ( − 1 − 1 1 ) . \displaystyle \begin{aligned}\boldsymbol{\varepsilon}_3=\frac{\boldsymbol{\beta}_3}{\left\|\boldsymbol{\beta}_3\right\|}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}-1 \\-1 \\1\end{array}\right) .\end{aligned} ε 3  = ∥ β 3  ∥ β 3   = 3  1   − 1 − 1 1   .  存在正交矩阵 P ,使得\displaystyle \begin{aligned}P^T A P = \Lambda = \left(\begin{array} a-1 & & \\ & a-1 \\ & & a+2 \end{array}\right)\end{aligned}   (2) C 2 = ( a + 3 ) E − A \boldsymbol{C}^{2}=(a+3) \boldsymbol{E}-\boldsymbol{A} C 2 = ( a + 3 ) E − A ( a + 3 ) E − A = ( 3 − 1 1 − 1 3 1 1 1 3 ) \displaystyle (a+3) E-A=\left(\begin{array}{ccc}3 & -1 & 1 \\ -1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right) ( a + 3 ) E − A =  3 − 1 1  − 1 3 1  1 1 3   C = Q Λ 1 k Q ⊤ , A = C k \displaystyle \begin{aligned} C = Q \Lambda^{\frac{1}{k}} Q^{\top}\text{,} A = C^k \end{aligned} C = Q Λ k 1  Q ⊤ , A = C k  下面就是要把施密特正交公式背下来∶施密特正交化的步骤 β1就是α1∶β 1 = α 1 \beta_1=\alpha_1 β 1  = α 1   β2就是α2减β1∶β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \beta_2=\alpha_2-\frac{\left(\alpha_2, \beta_1\right)}{\left(\beta_1, \beta_1\right)} \beta_1 β 2  = α 2  − ( β 1  , β 1  ) ( α 2  , β 1  )  β 1  求β2的系数 分子是α2和β1做内积 分母就是β1向量的坐标平方和  β3就是α3减β1再减β2∶β 3 = α 3 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 \beta_3=\alpha_3-\frac{\left(\alpha_3, \beta_1\right)}{\left(\beta_1, \beta_1\right)} \beta_1-\frac{\left(\alpha_3, \beta_2\right)}{\left(\beta_2, \beta_2\right)} \beta_2 β 3  = α 3  − ( β 1  , β 1  ) ( α 3  , β 1  )  β 1  − ( β 2  , β 2  ) ( α 3  , β 2  )  β 2  求β3的系数 β1的系数∶分子是α3和β1的内积,分母仍然是β1的坐标平方和 这样得到的三个向量肯定两两垂直,  这三个系数起什么作用?要保证这三个向量一定是两两垂直的   下一步单位化 γ 1 = β 1 ∥ β 1 ∥ γ 2 = β 2 ∥ β 2 ∥ γ 3 = β 3 ∥ β 3 ∥ \displaystyle \gamma_1=\frac{\beta_1}{\left\|\beta_1\right\|} \quad \gamma_2=\frac{\beta_2}{\left\|\beta_2\right\|} \quad \gamma_3=\frac{\beta_3}{\left\|\beta_3\right\|} γ 1  = ∥ β 1  ∥ β 1   γ 2  = ∥ β 2  ∥ β 2   γ 3  = ∥ β 3  ∥ β 3     写成通式,即γ i = β i ∥ β i ∥ ( i = 1 , 2 , 3 ) \gamma_i=\frac{\beta_i}{\left\|\beta_i\right\|}(i=1,2,3) γ i  = ∥ β i  ∥ β i   ( i = 1 , 2 , 3 ) 单位化后,得到的就是将两两垂直的向量,变成长度是1的单位向量   若 n \displaystyle \begin{aligned} n \end{aligned} n    阶矩阵 A \displaystyle \begin{aligned} A \end{aligned} A    可相似对角化/可正交对角化,且其特征值分别为 λ 1 , λ 2 , ⋯   , λ n \displaystyle \begin{aligned} \lambda_1, \lambda_2, \cdots, \lambda_n \end{aligned} λ 1  , λ 2  , ⋯ , λ n    ,要计算 C \displaystyle \begin{aligned} C \end{aligned} C    使得 A = C k \displaystyle \begin{aligned} A = C^k \end{aligned} A = C k   ? ∃ P \displaystyle \exists P ∃ P  ,使得P − 1 A P = Λ → A = P Λ P − 1 = P ( Λ 1 k ⋅ Λ 1 k ⋯ Λ 1 k ) P − 1 P^{-1} A P = \Lambda \rightarrow A = P \Lambda P^{-1} = P \left( \Lambda^{\frac{1}{k}} \cdot \Lambda^{\frac{1}{k}} \cdots \Lambda^{\frac{1}{k}} \right) P^{-1} P − 1 A P = Λ → A = P Λ P − 1 = P ( Λ k 1  ⋅ Λ k 1  ⋯ Λ k 1  ) P − 1 = P Λ 1 k P − 1 ⋅ P Λ 1 k P − 1 ⋯ ⋅ P Λ 1 k P − 1 \displaystyle \begin{aligned} = P \Lambda^{\frac{1}{k}} P^{-1} \cdot P \Lambda^{\frac{1}{k}} P^{-1} \cdots \cdot P \Lambda^{\frac{1}{k}} P^{-1} \end{aligned} = P Λ k 1  P − 1 ⋅ P Λ k 1  P − 1 ⋯ ⋅ P Λ k 1  P − 1  ∴ C = P Λ 1 k P − 1 ⋅ A = C k \displaystyle \begin{aligned} \therefore C = P \Lambda^{\frac{1}{k}} P^{-1} \cdot A = C^k \end{aligned} ∴ C = P Λ k 1  P − 1 ⋅ A = C k  ∃ Q \displaystyle \exists Q ∃ Q  ,使得Q ⊤ A Q = Λ . → A = Q Λ Q ⊤ = Q ( Λ 1 k ) Q ⊤ Q^{\top} A Q = \Lambda. \rightarrow A = Q \Lambda Q^{\top} = Q \left( \Lambda^{\frac{1}{k}} \right) Q^{\top} Q ⊤ A Q = Λ. → A = Q Λ Q ⊤ = Q ( Λ k 1  ) Q ⊤ = Q Λ 1 k Q ⊤ ⋯ ⋅ Q Λ 1 k Q ⊤ \displaystyle \begin{aligned} = Q \Lambda^{\frac{1}{k}} Q^{\top} \cdots \cdot Q \Lambda^{\frac{1}{k}} Q^{\top} \end{aligned} = Q Λ k 1  Q ⊤ ⋯ ⋅ Q Λ k 1  Q ⊤  C = Q Λ 1 k Q ⊤ , A = C k \displaystyle \begin{aligned} C = Q \Lambda^{\frac{1}{k}} Q^{\top}\text{,} A = C^k \end{aligned} C = Q Λ k 1  Q ⊤ , A = C k  (22) (本题满分 12 分)  在区间 ( 0 , 2 ) (0,2) ( 0 , 2 )   上随机取一点, 将该区间分成两段,较短一段的长度记为 X X X  , 较长一段的长度记 为 Y Y Y  , 令 Z = Y X Z=\frac{Y}{X} Z = X Y   .  (I) 求 X X X   的概率密度;  (II) 求 Z Z Z   的概率密度;  (III) 求 E ( X Y ) E\left(\frac{X}{Y}\right) E ( Y X  )  .
(22) 解  为了解释这个答案,我们将分步骤来展示解题过程及其逻辑关系。以下是解析:  (I) 求 X X X   的概率密度 定义 X X X X = min  { V , 2 − V } X = \min\{V, 2-V\} X = min { V , 2 − V }  ,表示较短一段的长度,则x的取值范围为(0,1) 如果超过1,就成了较长的一段,而不是较短的一段 x为长度,而不是(0,2)上的区间 若随机变量 X ∼ U ( a , b ) X \sim U(a, b) X ∼ U ( a , b )   则 X X X   概率密度函数 f ( x ) = { 1 b − a , a < x < b 0 ,  其他.  \displaystyle f(x)=\left\{\begin{array}{ll}\frac{1}{b-a}, & a<x<b \\0, & \text { 其他. }\end{array}\right. f ( x ) = { b − a 1  , 0 ,  a < x < b   其他 .    x ∼ ∪ ( 0 , 1 ) x \sim \cup(0,1) x ∼ ∪ ( 0 , 1 )  :x服从(0,1)的均匀分布,套公式 概率密度=区间长度分之一∴ f x ( x ) = { 1 , 0 < x < 1 0  else  \displaystyle \therefore f_x(x)=\left\{\begin{array}{lc}1 , & 0<x<1 \\ 0 & \text { else }\end{array}\right. ∴ f x  ( x ) = { 1 , 0  0 < x < 1  else     (II) 求 Z Z Z   的概率密度  定义 Z Z Z Z = Y X = X + Y = 2 2 − X X = 2 X − 1 Z = \frac{Y}{X} \xlongequal[]{X+Y=2} \frac{2-X}{X}=\frac{2}{X}-1 Z = X Y  X + Y = 2  X 2 − X  = X 2  − 1  。 如何讨论 如果x是离散型,则不用画进图中,直接用全集分解来分类讨论 只有连续型的范围,才画入图中  如果X和Y都是离散型,如何画图 如果X和Y都是连续型,如何画图 x,y,z都存在,则画出(x,y)的区间,然后让z=f(x,y)在这个区间从下往上刷  如果X和Y一个离散,一个连续,如何画图 只剩(x和z)或(y和z) 将x=g(z)反函数之后,就是从左往右刷 没有用反函数,还是z=f(x)的时候,就从下往上刷   由x的范围,y的范围和函数Z=g(X,Y)三者围成的区间画图 由z = 2 x − 1 z = \frac{2}{x}-1 z = x 2  − 1   的图像反解 x = 2 z + 1 x = \frac{2}{z+1} x = z + 1 2   然后直接三件套  - 当 z < 1 z<1 z < 1   时, → 写出分布函数 F Z ( z ) = 定义 P { Z ⩽ z } = 转化 0 \xrightarrow[]{\text{写出分布函数}}F_Z(z)\xlongequal[]{\text{定义}}P\{Z \leqslant z\}\xlongequal[]{\text{转化}}0 写出分布函数  F Z  ( z ) 定义  P { Z ⩽ z } 转化  0  ;  - 当 z ⩾ 1 z \geqslant 1 z ⩾ 1   时,→ 写出分布函数 F Z ( z ) = 定义 P { Z ⩽ z } = Z = 2 X − 1 转化 P { 2 X − 1 ⩽ z } = 反函数 P { X ⩾ 2 z + 1 } \xrightarrow[]{\text{写出分布函数}}F_Z(z)\xlongequal[]{\text{定义}}P\{Z \leqslant z\}\xlongequal[Z=\frac{2}{X}-1]{\text{转化}}P\left\{\frac{2}{X}-1 \leqslant z\right\}\xlongequal[]{\text{反函数}}P\left\{X \geqslant \frac{2}{z+1}\right\} 写出分布函数  F Z  ( z ) 定义  P { Z ⩽ z } 转化 Z = X 2  − 1  P { X 2  − 1 ⩽ z } 反函数  P { X ⩾ z + 1 2  }   - = 根据 x 的积分上下限 ∫ 2 z + 1 1 1   d x = 1 − 2 z + 1 . \displaystyle \xlongequal[]{\text{根据}x\text{的积分上下限}}\int_{\frac{2}{z+1}}^1 1 \mathrm{~d} x=1-\frac{2}{z+1} . 根据 x 的积分上下限  ∫ z + 1 2  1  1   d x = 1 − z + 1 2  .  Z Z Z   的概率密度=分布函数求导 利用 X X X   的概率密度和 Z Z Z   与 X X X   的关系来计算: f Z ( z ) = { 2 ( 1 + z ) 2 , z > 1 , 0 , 其他 . \displaystyle f_Z(z) = \begin{cases}\frac{2}{(1+z)^2}, & z > 1, \\ 0, & \text{其他}.\end{cases} f Z  ( z ) = { ( 1 + z ) 2 2  , 0 ,  z > 1 , 其他 .    (III) 求 E ( X Y ) E\left(\frac{X}{Y}\right) E ( Y X  ) 计算期望值:求谁的期望,在谁前面乘概率密度进行积分 E ( X Y ) = E ( X 2 − X ) = ∫ − ∞ + ∞ x 2 − x ⋅ f X ( x ) d x = 何处求积分 f X ( x ) = 1 ∫ 0 1 x 2 − x d x = 2 ln  2 − 1 \displaystyle E\left(\frac{X}{Y}\right) =E\left(\frac{X}{2-X}\right) =\int_{-\infty}^{+\infty} \frac{x}{2-x} \cdot f_X(x) \mathrm{d} x\xlongequal[\text{何处求积分}]{f_X(x) =1}\int_0^1 \frac{x}{2-x} dx=2 \ln 2 - 1 E ( Y X  ) = E ( 2 − X X  ) = ∫ − ∞ + ∞  2 − x x  ⋅ f X  ( x ) d x f X  ( x ) = 1 何处求积分  ∫ 0 1  2 − x x  d x = 2 ln 2 − 1  小崔版  (1) 令点为  M . M ∼ U ( 0.2 ) \displaystyle \begin{aligned} &\text { (1) 令点为 } M . M \sim U(0.2) \end{aligned}   (1)  令点为   M . M ∼ U ( 0.2 )  f M ( m ) = { 1 2 0 < m < 2 0  其  0 . F M ( m ) = { 0 m < 0 m 2 0 ⩽ m < 2 1 2 ⩽ m \displaystyle \begin{aligned} f_M(m)=\left\{\begin{array}{cc}\frac{1}{2} & 0<m<2 \\0 & \text { 其 } 0\end{array} . \quad F_M(m)=\left\{\begin{array}{cc}0 & m<0 \\\frac{m}{2} & 0 \leqslant m<2 \\1 & 2 \leqslant m\end{array}\right.\right. \end{aligned} f M  ( m ) = ⎩ ⎨ ⎧  2 1  0  0 < m < 2   其   0  . F M  ( m ) = ⎩ ⎨ ⎧  0 2 m  1  m < 0 0 ⩽ m < 2 2 ⩽ m   X = min  { M , 2 − M } \displaystyle \begin{aligned} X=\min \{M, 2-M\} \end{aligned} X = min { M , 2 − M }  F x ( x ) = P { X ⩽ x } = P { min  { M , 2 − M } ⩽ x } \displaystyle \begin{aligned} F_x(x) & =P\{X \leqslant x\}=P\{\min \{M, 2-M\} \leqslant x\} \end{aligned} F x  ( x )  = P { X ⩽ x } = P { min { M , 2 − M } ⩽ x }  = 1 − P { min  { M , 2 − M } > x } = 1 − P { M > x .2 − M > x } \displaystyle \begin{aligned} =1-P\{\min \{M, 2-M\}>x\}=1-P\{M>x .2-M>x\} \end{aligned} = 1 − P { min { M , 2 − M } > x } = 1 − P { M > x .2 − M > x }  = 1 − P { M > x , M < 2 − x } \displaystyle \begin{aligned} =1-P\{M>x \text{,}M<2-x\} \end{aligned} = 1 − P { M > x , M < 2 − x }  { 1 ∘  若  x < 0  时.  F x ( x ) = 0. 2 ∘  若  0 ⩽ x < 1  时.  F x ( x ) = 1 − P { x < M < 2 − x } = 1 − ∫ x 2 − x 1 2 d m = x 3 ∘  若  1 ⩽ x  时.  F x ( x ) = 1 . $ . \displaystyle \begin{aligned} & \left\{\begin{array}{l}1^{\circ} \text { 若 } x<0 \text { 时. } F_x(x)=0 . \\2^{\circ} \text { 若 } 0 \leqslant x<1 \text { 时. } F_x(x)=1-P\{x<M<2-x\}=1-\int_x^{2-x} \frac{1}{2} d m=x \\3^{\circ} \text { 若 } 1 \leqslant x \text { 时. } F_x(x)=1 \end{array} . \$ .\right. \end{aligned}  ⎩ ⎨ ⎧  1 ∘   若   x < 0   时 .  F x  ( x ) = 0. 2 ∘   若   0 ⩽ x < 1   时 .  F x  ( x ) = 1 − P { x < M < 2 − x } = 1 − ∫ x 2 − x  2 1  d m = x 3 ∘   若   1 ⩽ x   时 .  F x  ( x ) = 1  .$.  ⇒ f x ( x ) = { 1 0 < x < 1 0  其他  \displaystyle \begin{aligned}\Rightarrow f_x(x)= \begin{cases}1 & 0<x<1 \\0 & \text { 其他 }\end{cases}\end{aligned} ⇒ f x  ( x ) = { 1 0  0 < x < 1   其他       (2)F 2 ( z ) = P { Z ⩽ z } = P { 2 − X X ⩽ z } = P { 2 X − 1 ⩽ z } \displaystyle F_2(z) =P\{Z\leqslant z\}=P\left\{\frac{2-X}{X} \leqslant z\right\}=P\left\{\frac{2}{X}-1 \leqslant z\right\} F 2  ( z ) = P { Z ⩽ z } = P { X 2 − X  ⩽ z } = P { X 2  − 1 ⩽ z } = P { x ⩾ 2 z + 1 } \displaystyle =P\left\{x \geqslant \frac{2}{z+1}\right\} = P { x ⩾ z + 1 2  } z < 1 z<1 z < 1  时.F 2 ( z ) = 0 F_2(z)=0 F 2  ( z ) = 0 1 ⩽ z 1 \leqslant z 1 ⩽ z  时.F 2 ( z ) = P { x ⩾ 2 z + 1 } = x 密度为 1 x ∈ ( 0 , 1 ) ∫ 2 z + 1 1 1 d x = 1 − 2 3 + 1 F_2(z)=P\left\{x \geqslant \frac{2}{z+1}\right\}\xlongequal[x\text{密度为}1]{x\in(0,1)} \int_{\frac{2}{z+1}}^1 1 d x=1-\frac{2}{3+1} F 2  ( z ) = P { x ⩾ z + 1 2  } x ∈ ( 0 , 1 ) x 密度为 1  ∫ z + 1 2  1  1 d x = 1 − 3 + 1 2    (3)E ( X Y ) = E ( X 2 − X ) = ∫ − ∞ + ∞ x 2 − x ⋅ f x ( x ) d x \displaystyle E\left(\frac{X}{Y}\right) =E\left(\frac{X}{2-X}\right)=\int_{-\infty}^{+\infty} \frac{x}{2-x} \cdot f_x(x) d x E ( Y X  ) = E ( 2 − X X  ) = ∫ − ∞ + ∞  2 − x x  ⋅ f x  ( x ) d x = f X ( x ) = 1 ∫ 0 1 x 2 − x d x = − 2 + 2 ∫ 0 1 − 1 + 2 2 − x d x \displaystyle \xlongequal[]{f_X(x) =1}\int_0^1 \frac{x}{2-x} d x\xlongequal[]{-2+2}\int_0^1-1+\frac{2}{2-x} d x f X  ( x ) = 1  ∫ 0 1  2 − x x  d x − 2 + 2  ∫ 0 1  − 1 + 2 − x 2  d x = − x − 2 ln  ∣ 2 − x ∣ ∣ 0 1 = 2 ln  2 − 1 \displaystyle =-x-\left.2 \ln |2-x|\right|_0 ^1=2 \ln 2-1 = − x − 2 ln ∣2 − x ∣ ∣ 0 1  = 2 ln 2 − 1