一、选择题 (本题共 8 小题, 每小题 4 分, 共 32 分. 在每小题给出的四个选项中, 只有一项符合题目要 求,把所选项前的字母填在题后的括号内. )
(1) 当 x → 0 + x \rightarrow 0^{+} x → 0 +  时,下列无穷小量中最高阶的是 ( ) (\quad) ( )   (A) ∫ 0 x ( e t 2 − 1 ) d t \displaystyle \int_{0}^{x}\left(\mathrm{e}^{t^{2}}-1\right) \mathrm{d} t ∫ 0 x  ( e t 2 − 1 ) d t   (B) ∫ 0 x ln  ( 1 + t 3 ) d t \displaystyle \int_{0}^{x} \ln \left(1+\sqrt{t^{3}}\right) \mathrm{d} t ∫ 0 x  ln ( 1 + t 3  ) d t  .  ( C) ∫ 0 sin  x sin  t 2   d t \displaystyle \int_{0}^{\sin x} \sin t^{2} \mathrm{~d} t ∫ 0 s i n x  sin t 2   d t  .  (D) ∫ 0 1 − cos  x sin  3 t   d t \displaystyle \int_{0}^{1-\cos x} \sqrt{\sin ^{3} t} \mathrm{~d} t ∫ 0 1 − c o s x  sin 3 t    d t  .
(1) 高昆仑版 设 x → 0 \displaystyle x \rightarrow 0 x → 0   时,f ( x ) \displaystyle f(x) f ( x )   是 x \displaystyle x x   的 m \displaystyle m m   阶无穷小,g ( x ) \displaystyle g(x) g ( x )   是 x \displaystyle x x   的 n \displaystyle n n   阶无穷小,\displaystyle  则∫ 0 g ( x ) f ( t )   d t \int_0^{g(x)} f(t) \, dt ∫ 0 g ( x )  f ( t ) d t  是x x x  的( m + 1 ) ⋅ n (m+1) \cdot n ( m + 1 ) ⋅ n  阶无穷小. . . ( A ) \displaystyle (A) ( A )   是 x \displaystyle x x   的 ( 2 + 1 ) ⋅ 1 = 3 \displaystyle (2+1) \cdot 1 = 3 ( 2 + 1 ) ⋅ 1 = 3   阶无穷小。( B ) \displaystyle (B) ( B )  是x x x  的( 3 2 + 1 ) ⋅ 1 = 5 2 \left(\frac{3}{2} + 1\right) \cdot 1 = \frac{5}{2} ( 2 3  + 1 ) ⋅ 1 = 2 5   阶无穷小. . . ( C ) \displaystyle (C) ( C )   是 x \displaystyle x x   的 ( 2 + 1 ) ⋅ 1 = 3 \displaystyle (2+1) \cdot 1 = 3 ( 2 + 1 ) ⋅ 1 = 3   阶无穷小.( D ) \displaystyle (D) ( D )  是x x x  的( 3 2 + 1 ) ⋅ 2 = 5 \left(\frac{3}{2} + 1\right) \cdot 2 = 5 ( 2 3  + 1 ) ⋅ 2 = 5  阶无穷小. . .  2024版 小总结:要找出最高阶的无穷小量,需要分别计算每个选项的阶数。 第二步:计算每个选项的阶数 选项 A: 导数( e x 2 − 1 ) ∼ x 2 (e^{x^2}-1) \sim x^2 ( e x 2 − 1 ) ∼ x 2   为 x 2 x^2 x 2   阶无穷小。 估阶:1 × ( 2 + 1 ) = 3 1\times(2+1)=3 1 × ( 2 + 1 ) = 3   选项 B: 导数ln  ( 1 + x 3 ) ∼ x 3 / 2 \ln(1+\sqrt{x^3}) \sim x^{3/2} ln ( 1 + x 3  ) ∼ x 3/2   为 x 3 / 2 x^{3/2} x 3/2   阶无穷小。 估阶:1 × ( 3 2 + 1 ) = 5 2 1\times(\frac32+1)=\frac{5}{2} 1 × ( 2 3  + 1 ) = 2 5   选项 C: 导数sin  ( sin  2 x ) cos  x ∼ x 2 \sin(\sin^2 x) \cos x \sim x^2 sin ( sin 2 x ) cos x ∼ x 2   为 x 2 x^2 x 2   阶无穷小。 估阶:1 × ( 2 + 1 ) = 3 1\times(2+1)=3 1 × ( 2 + 1 ) = 3  选项 D: 导数sin  x sin  3 ( 1 − cos  x ) ∼ x 4 \sin x \sqrt{\sin^3(1-\cos x)} \sim x^4 sin x sin 3 ( 1 − cos x )  ∼ x 4   为 x 4 x^4 x 4   阶无穷小。 估阶:2 × ( 3 2 + 1 ) = 5 2\times(\frac{3}{2}+1)=5 2 × ( 2 3  + 1 ) = 5  根据以上分析,正确答案是 (D)。 (2) 设函数 f ( x ) f(x) f ( x )   在区间 ( − 1 , 1 ) (-1,1) ( − 1 , 1 )   内有定义, 且 lim  x → 0 f ( x ) = 0 \displaystyle \lim _{x \rightarrow 0} f(x)=0 x → 0 lim  f ( x ) = 0  , 则 ( ) (\quad) ( )   (A) 当 lim  x → 0 f ( x ) ∣ x ∣ = 0 \displaystyle \lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0 x → 0 lim  ∣ x ∣  f ( x )  = 0   时, f ( x ) f(x) f ( x )   在 x = 0 x=0 x = 0   处可导.  (B) 当 lim  x → 0 f ( x ) x 2 = 0 \displaystyle \lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=0 x → 0 lim  x 2 f ( x )  = 0   时, f ( x ) f(x) f ( x )   在 x = 0 x=0 x = 0   处可导.  (C) 当 f ( x ) f(x) f ( x )   在 x = 0 x=0 x = 0   处可导时, lim  x → 0 f ( x ) ∣ x ∣ = 0 \displaystyle \lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0 x → 0 lim  ∣ x ∣  f ( x )  = 0  .  (D) 当 f ( x ) f(x) f ( x )   在 x = 0 x=0 x = 0   处可导时, lim  x → 0 f ( x ) x 2 = 0 \displaystyle \lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=0 x → 0 lim  x 2 f ( x )  = 0  .
(2) 答 应选 C. 解:f ( x ) \displaystyle f(x) f ( x )   未必在 x = 0 \displaystyle x = 0 x = 0   处连续,未必有 f ( 0 ) = 0 \displaystyle f(0) = 0 f ( 0 ) = 0  , 此时 ( A ) \displaystyle (A) ( A )   和 ( B ) \displaystyle (B) ( B )   凑不出 lim  x → 0 f ( x ) − f ( 0 ) x \displaystyle \lim_{x \to 0} \frac{f(x) - f(0)}{x} x → 0 lim  x f ( x ) − f ( 0 )    的形式。  当 f ( x ) \displaystyle f(x) f ( x )   在 x = 0 \displaystyle x = 0 x = 0   处可导时,(可导必然连续,连续不一定可导) f ( x ) \displaystyle f(x) f ( x )   在 x = 0 \displaystyle x = 0 x = 0   处连续,f ( 0 ) = lim  x → 0 f ( x ) = 0 \displaystyle f(0) = \lim_{x \to 0} f(x) = 0 f ( 0 ) = x → 0 lim  f ( x ) = 0  ,此时 lim  x → 0 f ( x ) ∣ x ∣ = lim  x → 0 f ( x ) − f ( 0 ) x ⋅ x ∣ x ∣ = f ′ ( 0 ) ⋅ 0 = 0 \displaystyle \lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x} \cdot \frac{x}{\sqrt{|x|}}=f^{\prime}(0) \cdot 0=0 x → 0 lim  ∣ x ∣  f ( x )  = x → 0 lim  x f ( x ) − f ( 0 )  ⋅ ∣ x ∣  x  = f ′ ( 0 ) ⋅ 0 = 0  同时 lim  x → 0 f ( x ) x 2 = lim  x → 0 f ( x ) − f ( 0 ) x ⋅ x x 2 = f ′ ( 0 ) ⋅ ∞ \displaystyle \lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \frac{f(x) - f(0)}{x} \cdot \frac{x}{x^2} = f'(0) \cdot \infty x → 0 lim  x 2 f ( x )  = x → 0 lim  x f ( x ) − f ( 0 )  ⋅ x 2 x  = f ′ ( 0 ) ⋅ ∞  ,未必存在。 因为有可能 f ′ ( 0 ) = lim  x → 0 f ( x ) − f ( 0 ) x ≠ 0 \displaystyle f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x} \neq 0 f ′ ( 0 ) = x → 0 lim  x f ( x ) − f ( 0 )   = 0  ,此时结果为\infty,极限不存在   (3) 设函数 f ( x , y ) f(x, y) f ( x , y )   在点 ( 0 , 0 ) (0,0) ( 0 , 0 )   处可微, f ( 0 , 0 ) = 0 , n = ( ∂ f ∂ x , ∂ f ∂ y , − 1 ) ∣ ( 0 , 0 ) f(0,0)=0, \boldsymbol{n}=\left.\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},-1\right)\right|_{(0,0)} f ( 0 , 0 ) = 0 , n = ( ∂ x ∂ f  , ∂ y ∂ f  , − 1 )  ( 0 , 0 )   , 非零向量 α \boldsymbol{\alpha} α   与 n \boldsymbol{n} n   垂直, 则 ( ) (\quad) ( )  (A) lim  ( x , y ) → ( 0 , 0 ) ∣ n ⋅ ( x , y , f ( x , y ) ) ∣ x 2 + y 2 \displaystyle \lim _{(x, y) \rightarrow(0,0)} \frac{|\boldsymbol{n} \cdot(x, y, f(x, y))|}{\sqrt{x^{2}+y^{2}}} ( x , y ) → ( 0 , 0 ) lim  x 2 + y 2  ∣ n ⋅ ( x , y , f ( x , y )) ∣    存在.  (B) lim  ( x , y ) → ( 0 , 0 ) ∣ n × ( x , y , f ( x , y ) ) ∣ x 2 + y 2 \displaystyle \lim _{(x, y) \rightarrow(0,0)} \frac{|\boldsymbol{n} \times(x, y, f(x, y))|}{\sqrt{x^{2}+y^{2}}} ( x , y ) → ( 0 , 0 ) lim  x 2 + y 2  ∣ n × ( x , y , f ( x , y )) ∣    存在.  (C) lim  ( x , y ) → ( 0 , 0 ) ∣ α ⋅ ( x , y , f ( x , y ) ) ∣ x 2 + y 2 \displaystyle \lim _{(x, y) \rightarrow(0,0)} \frac{|\boldsymbol{\alpha} \cdot(x, y, f(x, y))|}{\sqrt{x^{2}+y^{2}}} ( x , y ) → ( 0 , 0 ) lim  x 2 + y 2  ∣ α ⋅ ( x , y , f ( x , y )) ∣    存在.  (D) lim  ( x , y ) → ( 0 , 0 ) ∣ α × ( x , y , f ( x , y ) ) ∣ x 2 + y 2 \displaystyle \lim _{(x, y) \rightarrow(0,0)} \frac{|\boldsymbol{\alpha} \times(x, y, f(x, y))|}{\sqrt{x^{2}+y^{2}}} ( x , y ) → ( 0 , 0 ) lim  x 2 + y 2  ∣ α × ( x , y , f ( x , y )) ∣    存在.
(3) 答 应选 A. 函数 f ( x , y ) \displaystyle f(x, y) f ( x , y )   在点 ( 0 , 0 ) \displaystyle (0, 0) ( 0 , 0 )   处可微,则有 lim  ( x , y ) → ( 0 , 0 ) f ( x , y ) − f ( 0 , 0 ) − ∂ f ∂ x ∣ ( 0 , 0 ) x − ∂ f ∂ y ∣ ( 0 , 0 ) y x 2 + y 2 = 0 , \displaystyle \lim_{(x, y) \to (0, 0)} \frac{f(x, y) - f(0, 0) - \left.\frac{\partial f}{\partial x}\right|_{(0,0)} x - \left.\frac{\partial f}{\partial y}\right|_{(0,0)} y}{\sqrt{x^2 + y^2}} = 0 , ( x , y ) → ( 0 , 0 ) lim  x 2 + y 2  f ( x , y ) − f ( 0 , 0 ) − ∂ x ∂ f   ( 0 , 0 )  x − ∂ y ∂ f   ( 0 , 0 )  y  = 0 , → f ( 0 , 0 ) = 0 lim  ( x , y ) → ( 0 , 0 ) f ( x , y ) − ∂ f ∂ x ∣ ( 0 , 0 ) x − ∂ f ∂ y ∣ ( 0 , 0 ) y x 2 + y 2 = 0. \displaystyle \xrightarrow[]{f(0,0)=0}\lim_{(x, y) \to (0, 0)} \frac{f(x, y) - \left.\frac{\partial f}{\partial x}\right|_{(0,0)} x - \left.\frac{\partial f}{\partial y}\right|_{(0,0)} y}{\sqrt{x^2 + y^2}} = 0 . f ( 0 , 0 ) = 0  ( x , y ) → ( 0 , 0 ) lim  x 2 + y 2  f ( x , y ) − ∂ x ∂ f   ( 0 , 0 )  x − ∂ y ∂ f   ( 0 , 0 )  y  = 0.  lim  ( x , y ) → ( 0 , 0 ) ∣ n ⃗ ⋅ ( x , y , f ( x , y ) ) ∣ x 2 + y 2 = n = ( ∂ f ∂ x , ∂ f ∂ y , − 1 ) ∣ ( 0 , 0 ) lim  ( x , y ) → ( 0 , 0 ) ∣ ∂ f ∂ x ∣ ( 0 , 0 ) ⋅ x + ∂ f ∂ y ∣ ( 0 , 0 ) ⋅ y − f ( x , y ) ∣ x 2 + y 2 \displaystyle \lim_{(x, y) \to (0, 0)} \frac{\left| \vec{n} \cdot (x, y, f(x, y)) \right|}{\sqrt{x^2 + y^2}} \xlongequal[]{\boldsymbol{n}=\left.\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},-1\right)\right|_{(0,0)}}\lim_{(x, y) \to (0, 0)} \frac{\left| \left. \frac{\partial f}{\partial x} \right|_{(0,0)} \cdot x + \left. \frac{\partial f}{\partial y} \right|_{(0,0)} \cdot y - f(x, y) \right|}{\sqrt{x^2 + y^2}} ( x , y ) → ( 0 , 0 ) lim  x 2 + y 2  ∣ n ⋅ ( x , y , f ( x , y )) ∣  n = ( ∂ x ∂ f  , ∂ y ∂ f  , − 1 ) ∣ ( 0 , 0 )   ( x , y ) → ( 0 , 0 ) lim  x 2 + y 2   ∂ x ∂ f   ( 0 , 0 )  ⋅ x + ∂ y ∂ f   ( 0 , 0 )  ⋅ y − f ( x , y )   = 整理 lim  ( x , y ) → ( 0 , 0 ) ∣ f ( x , y ) − ∂ f ∂ x ∣ ( 0 , 0 ) ⋅ x − ∂ f ∂ y ∣ ( 0 , 0 ) ⋅ y ∣ x 2 + y 2 = 0. \displaystyle \xlongequal[]{\text{整理}}\lim_{(x, y) \to (0, 0)} \frac{\left| f(x, y) - \left. \frac{\partial f}{\partial x} \right|_{(0,0)} \cdot x - \left. \frac{\partial f}{\partial y} \right|_{(0,0)} \cdot y \right|}{\sqrt{x^2 + y^2}} = 0 . 整理  ( x , y ) → ( 0 , 0 ) lim  x 2 + y 2   f ( x , y ) − ∂ x ∂ f   ( 0 , 0 )  ⋅ x − ∂ y ∂ f   ( 0 , 0 )  ⋅ y   = 0. (4) 设 R R R   为幂级数 ∑ n = 1 ∞ a n x n \displaystyle \sum_{n=1}^{\infty} a_{n} x^{n} n = 1 ∑ ∞  a n  x n   的收敛半径, r r r   是实数,则 ()  (A) 当 ∑ n = 1 ∞ a 2 n r 2 n \displaystyle \sum_{n=1}^{\infty} a_{2 n} r^{2 n} n = 1 ∑ ∞  a 2 n  r 2 n   发散时, ∣ r ∣ ⩾ R |r| \geqslant R ∣ r ∣ ⩾ R  .  (B) 当 ∑ n = 1 ∞ a 2 n r 2 n \displaystyle \sum_{n=1}^{\infty} a_{2 n} r^{2 n} n = 1 ∑ ∞  a 2 n  r 2 n   收敛时, ∣ r ∣ ⩽ R |r| \leqslant R ∣ r ∣ ⩽ R  .  (C) 当 ∣ r ∣ ⩾ R |r| \geqslant R ∣ r ∣ ⩾ R   时, ∑ n = 1 ∞ a 2 n r 2 n \displaystyle \sum_{n=1}^{\infty} a_{2 n} r^{2 n} n = 1 ∑ ∞  a 2 n  r 2 n   发散.  (D) 当 ∣ r ∣ ⩽ R |r| \leqslant R ∣ r ∣ ⩽ R   时, ∑ n = 1 ∞ a 2 n r 2 n \displaystyle \sum_{n=1}^{\infty} a_{2 n} r^{2 n} n = 1 ∑ ∞  a 2 n  r 2 n   收玫.
(4) 答应选 A. 解:当 ∣ r ∣ < R \displaystyle |r| < R ∣ r ∣ < R   时,根据阿贝尔定理,此时级数 ∑ n = 1 ∞ a n r n \displaystyle \sum_{n=1}^{\infty} a_n r^n n = 1 ∑ ∞  a n  r n   绝对收敛, 即正项级数 ∑ n = 1 ∞ ∣ a n r n ∣ \displaystyle \sum_{n=1}^{\infty} |a_n r^n| n = 1 ∑ ∞  ∣ a n  r n ∣   收敛,进而 ∑ n = 1 ∞ ∣ a 2 n r 2 n ∣ \displaystyle \sum_{n=1}^{\infty} |a_{2n} r^{2n}| n = 1 ∑ ∞  ∣ a 2 n  r 2 n ∣   也收敛。故 ∑ n = 1 ∞ a 2 n r 2 n \displaystyle \sum_{n=1}^{\infty} a_{2n} r^{2n} n = 1 ∑ ∞  a 2 n  r 2 n  (绝对)收敛。 于是根据逆否命题的等价性知当 ∑ n = 1 ∞ a 2 n r 2 n \displaystyle \sum_{n=1}^{\infty} a_{2n} r^{2n} n = 1 ∑ ∞  a 2 n  r 2 n   发散时,必有 ∣ r ∣ ≥ R \displaystyle |r| \geq R ∣ r ∣ ≥ R  ,选 A。  注意,正项级数 ∑ n = 1 ∞ u n \displaystyle \sum_{n=1}^{\infty} u_n n = 1 ∑ ∞  u n    收敛,则 ∑ n = 1 ∞ u 2 n \displaystyle \sum_{n=1}^{\infty} u_{2n} n = 1 ∑ ∞  u 2 n   ,∑ n = 1 ∞ u 2 n + 1 \displaystyle \sum_{n=1}^{\infty} u_{2n+1} n = 1 ∑ ∞  u 2 n + 1   ,∑ n = 1 ∞ u n 2 \displaystyle \sum_{n=1}^{\infty} u_n^2 n = 1 ∑ ∞  u n 2    都收敛。 排除法 取幂级数 ∑ n = 1 ∞ a n x n = ∑ n = 1 ∞ [ 2 − ( − 1 ) n ] n 3 n x n \displaystyle \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} \frac{\left[2 - (-1)^n\right]^n}{3^n} x^n n = 1 ∑ ∞  a n  x n = n = 1 ∑ ∞  3 n [ 2 − ( − 1 ) n ] n  x n  ,其收敛半径 R = 1 \displaystyle R = 1 R = 1  ,取 r = 2 \displaystyle r = 2 r = 2  , 此时 ∑ n = 1 ∞ a 2 n r 2 n = ∑ n = 1 ∞ ( 2 3 ) 2 n \displaystyle \sum_{n=1}^{\infty} a_{2n} r^{2n} = \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^{2n} n = 1 ∑ ∞  a 2 n  r 2 n = n = 1 ∑ ∞  ( 3 2  ) 2 n   收敛,排除 ( B ) \displaystyle (B) ( B )   和 ( C ) \displaystyle (C) ( C )  。  取幂级数 ∑ n = 1 ∞ a n x n = ∑ n = 1 ∞ [ 2 + ( − 1 ) n ] n 3 n x n \displaystyle \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} \frac{\left[2 + (-1)^n\right]^n}{3^n} x^n n = 1 ∑ ∞  a n  x n = n = 1 ∑ ∞  3 n [ 2 + ( − 1 ) n ] n  x n  ,其收敛半径 R = 1 \displaystyle R = 1 R = 1  ,取 r = 1 \displaystyle r = 1 r = 1  , 此时 ∑ n = 1 ∞ a 2 n r 2 n = ∑ n = 1 ∞ 1 \displaystyle \sum_{n=1}^{\infty} a_{2n} r^{2n} = \sum_{n=1}^{\infty} 1 n = 1 ∑ ∞  a 2 n  r 2 n = n = 1 ∑ ∞  1   发散,排除 ( D ) \displaystyle (D) ( D )  。   当 ∣ r ∣ < R |r|<R ∣ r ∣ < R   时,根据阿贝尔定理, 此时级数 ∑ n = 1 ∞ a n r n \displaystyle \sum_{n=1}^{\infty} a_n r^n n = 1 ∑ ∞  a n  r n   绝对收敛,即正项级数 ∑ n = 1 ∞ ∣ a n r n ∣ \displaystyle \sum_{n=1}^{\infty}\left|a_n r^n\right| n = 1 ∑ ∞  ∣ a n  r n ∣   收敛, 而正项级数 ∑ n = 1 ∞ ∣ a 2 n r 2 n ∣ \displaystyle \sum_{n=1}^{\infty}\left|a_{2 n} r^{2 n}\right| n = 1 ∑ ∞   a 2 n  r 2 n    可看作是由 ∑ n = 1 ∞ ∣ a n r n ∣ \displaystyle \sum_{n=1}^{\infty}\left|a_n r^n\right| n = 1 ∑ ∞  ∣ a n  r n ∣   的所有偶数项构成的, 故也收敛, 从而 ∑ n = 1 ∞ a 2 n r 2 n \displaystyle \sum_{n=1}^{\infty} a_{2 n} r^{2 n} n = 1 ∑ ∞  a 2 n  r 2 n   收敛.  于是根据逆否 命题的等价性, 知当 ∑ n = 1 ∞ a 2 n r 2 n \displaystyle \sum_{n=1}^{\infty} a_{2 n} r^{2 n} n = 1 ∑ ∞  a 2 n  r 2 n   发散时, 必有 ∣ r ∣ ⩾ R |r| \geqslant R ∣ r ∣ ⩾ R  , 选 A \mathrm{A} A  .  (5) 若矩阵 A \boldsymbol{A} A   经初等列变换 化成 B \boldsymbol{B} B  , 则 ( )  (A) 存在矩阵 P \boldsymbol{P} P  , 使得 P A = B \boldsymbol{P A}=\boldsymbol{B} PA = B  .  (B) 存在矩阵 P \boldsymbol{P} P  ,使得 B P = A \boldsymbol{B P}=\boldsymbol{A} BP = A  .  (C) 存在矩阵 P \boldsymbol{P} P  , 使得 P B = A \boldsymbol{P B}=\boldsymbol{A} PB = A  .  (D) 方程组 A x = 0 \boldsymbol{A x}=\mathbf{0} Ax = 0   与 B x = 0 \boldsymbol{B} \boldsymbol{x}=\mathbf{0} B x = 0   同解.
(5) 解方程尽量用初等行变换,不要用列变换,  解 A A A   经过初等列变换化成 B B B  , 即存在若干初等矩阵 P 1 , P 2 , ⋯   , P s P_1, P_2, \cdots, P_s P 1  , P 2  , ⋯ , P s   , 使得 A P 1 P 2 ⋯ P s = B A P_1 P_2 \cdots P_s=B A P 1  P 2  ⋯ P s  = B  , 也即 A P 0 = A P_0= A P 0  =   B B B  , 这里 P 0 = P 1 P 2 ⋯ P 5 \boldsymbol{P}_0=\boldsymbol{P}_1 \boldsymbol{P}_2 \cdots \boldsymbol{P}_5 P 0  = P 1  P 2  ⋯ P 5    可逆, 于是 → 右乘 P 0 − 1 B P 0 − 1 = A \xrightarrow[]{\text{右乘}P_0^{-1}}B P_0^{-1}=A 右乘 P 0 − 1   B P 0 − 1  = A  , 则 → P 0 − 1 = P B P = A \xrightarrow[]{P_0^{-1}=\boldsymbol{P}}B P=A P 0 − 1  = P  BP = A  , 选 B \mathrm{B} B  .  方程组 A x = 0 \boldsymbol{A x}=\mathbf{0} Ax = 0   与 B x = 0 \boldsymbol{B} \boldsymbol{x}=\mathbf{0} B x = 0   同解.  (6) 已知直线 l 1 : x − a 2 a 1 = y − b 2 b 1 = z − c 2 c 1 l_{1}: \frac{x-a_{2}}{a_{1}}=\frac{y-b_{2}}{b_{1}}=\frac{z-c_{2}}{c_{1}} l 1  : a 1  x − a 2   = b 1  y − b 2   = c 1  z − c 2     与直线 l 2 : x − a 3 a 2 = y − b 3 b 2 = z − c 3 c 2 l_{2}: \frac{x-a_{3}}{a_{2}}=\frac{y-b_{3}}{b_{2}}=\frac{z-c_{3}}{c_{2}} l 2  : a 2  x − a 3   = b 2  y − b 3   = c 2  z − c 3     相交于一点. 记向量 α i = ( a i b i c i ) , i = 1 , 2 , 3 \displaystyle \boldsymbol{\alpha}_{i}=\left(\begin{array}{l}a_{i} \\ b_{i} \\ c_{i}\end{array}\right), i=1,2,3 α i  =  a i  b i  c i    , i = 1 , 2 , 3  , 则 ( ) (\quad) ( )   (A) α 1 \boldsymbol{\alpha}_{1} α 1    可由 α 2 , α 3 \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} α 2  , α 3    线性表示.  (B) α 2 \boldsymbol{\alpha}_{2} α 2    可由 α 1 , α 3 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{3} α 1  , α 3    线性表示.  (C) α 3 \boldsymbol{\alpha}_{3} α 3    可由 α 1 , α 2 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2} α 1  , α 2    线性表示.  (D) α 1 , α 2 , α 3 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} α 1  , α 2  , α 3    线性无关.
(6) 答 应选 C.
解 由于两直线相交, 故两直线的方向向量线性无关, 即 α 1 , α 2 \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2 α 1  , α 2    线性无关, 分别取两直线上的点 A ( a 2 , b 2 , c 2 ) , B ( a 3 , b 3 , c 3 ) A\left(a_2, b_2, c_2\right), B\left(a_3, b_3, c_3\right) A ( a 2  , b 2  , c 2  ) , B ( a 3  , b 3  , c 3  )  , 则向量 A B → \overrightarrow{A B} A B   与两直线的方向向量是共面的, 所以它们三者的混合积为 0 , 故 ∣ a 1 a 2 a 3 − a 2 b 1 b 2 b 3 − b 2 c 1 c 2 c 3 − c 2 ∣ = ∣ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ∣ = 0 , \displaystyle \left|\begin{array}{lll}a_1 & a_2 & a_3-a_2 \\b_1 & b_2 & b_3-b_2 \\c_1 & c_2 & c_3-c_2\end{array}\right|=\left|\begin{array}{lll}a_1 & a_2 & a_3 \\b_1 & b_2 & b_3 \\c_1 & c_2 & c_3\end{array}\right|=0,  a 1  b 1  c 1   a 2  b 2  c 2   a 3  − a 2  b 3  − b 2  c 3  − c 2    =  a 1  b 1  c 1   a 2  b 2  c 2   a 3  b 3  c 3    = 0 , 所以 α 3 \boldsymbol{\alpha}_3 α 3    可由 α 1 , α 2 \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2 α 1  , α 2    线性表示, 选 C.   (7) 设 A , B , C A, B, C A , B , C   为三个随机事件, 且 P ( A ) = P ( B ) = P ( C ) = 1 4 , P ( A B ) = 0 , P ( A C ) = P ( B C ) = P(A)=P(B)=P(C)=\frac{1}{4}, P(A B)=0, P(A C)=P(B C)= P ( A ) = P ( B ) = P ( C ) = 4 1  , P ( A B ) = 0 , P ( A C ) = P ( BC ) =   1 12 \frac{1}{12} 12 1   , 则 A , B , C A, B, C A , B , C   中恰有一个事件发生的概率为 ( ) (\quad) ( )   (A) 3 4 \frac{3}{4} 4 3   .  (B) 2 3 \frac{2}{3} 3 2   .  (C) 1 2 \frac{1}{2} 2 1   .  (D) 5 12 \frac{5}{12} 12 5   .
(7) 2025版 (1) 两个事件的加法公式: P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B)=P(A)+P(B)-P(A B) P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B )  (2) 三个事件的加法公式: P ( A 1 ∪ A 2 ∪ A 3 ) = P ( A 1 ) + P ( A 2 ) + P ( A 3 ) − P ( A 1 A 2 ) − P ( A 1 A 3 ) − P ( A 2 A 3 ) + P ( A 1 A 2 A 3 ) . P\left(A_1 \cup A_2 \cup A_3\right)=P\left(A_1\right)+P\left(A_2\right)+P\left(A_3\right)-P\left(A_1 A_2\right)-P\left(A_1 A_3\right)-P\left(A_2 A_3\right)+P\left(A_1 A_2 A_3\right) . P ( A 1  ∪ A 2  ∪ A 3  ) = P ( A 1  ) + P ( A 2  ) + P ( A 3  ) − P ( A 1  A 2  ) − P ( A 1  A 3  ) − P ( A 2  A 3  ) + P ( A 1  A 2  A 3  ) . 注意," A , B , C A, B, C A , B , C   中恰有一个发生"也可表示为 A ∪ B ∪ C − A B ∪ A C ∪ B C A \cup B \cup C-A B \cup A C \cup B C A ∪ B ∪ C − A B ∪ A C ∪ BC  .  而  P ( A ∪ B ∪ C − A B ∪ A C ∪ B C ) = P ( A ∪ B ∪ C ) − P ( A B ∪ A C ∪ B C ) \text { 而 } P(A \cup B \cup C-A B \cup A C \cup B C)=P(A \cup B \cup C)-P(A B \cup A C \cup B C)   而   P ( A ∪ B ∪ C − A B ∪ A C ∪ BC ) = P ( A ∪ B ∪ C ) − P ( A B ∪ A C ∪ BC ) 至少一个发生P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( B C ) − P ( A C ) + P ( A B C ) = 1 4 + 1 4 + 1 4 − 0 − 1 12 − 1 12 + 0 = 7 12 . \displaystyle \begin{array}{l}P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A B)-P(B C)-P(A C)+P(A B C) \\ =\frac{1}{4}+\frac{1}{4}+\frac{1}{4}-0-\frac{1}{12}-\frac{1}{12}+0=\frac{7}{12} .\end{array} P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( BC ) − P ( A C ) + P ( A BC ) = 4 1  + 4 1  + 4 1  − 0 − 12 1  − 12 1  + 0 = 12 7  .   两个一起发生P ( A B ∪ B C ∪ A C ) = P ( A B ) + P ( B C ) + P ( A C ) − P ( A B C ) − P ( A B C ) − P ( A B C ) + P ( A B C ) \displaystyle P(A B \cup B C \cup A C) =P(A B)+P(B C)+P(A C)-P(A B C)-P(A B C)-P(A B C)+P(A B C) P ( A B ∪ BC ∪ A C ) = P ( A B ) + P ( BC ) + P ( A C ) − P ( A BC ) − P ( A BC ) − P ( A BC ) + P ( A BC ) P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( B C ) − P ( A C ) + P ( A B C ) P(A)+P(B)+P(C)-P(A B)-P(B C)-P(A C)_{+} P(A B C) P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( BC ) − P ( A C ) +  P ( A BC ) = 0 + 1 12 + 1 12 + 0 = 1 6 \displaystyle =0+\frac{1}{12}+\frac{1}{12}+0=\frac{1}{6} = 0 + 12 1  + 12 1  + 0 = 6 1   三个同时发生P ( A B C ) = 0 P(ABC)=0 P ( A BC ) = 0  至少一个发生的概率 减去两个一起发生的概率 再减去三个一起发生的概率 只剩下只有一个发生的概率:p = 7 12 − 1 6 = 5 12 p=\frac{7}{12}-\frac{1}{6}=\frac{5}{12} p = 12 7  − 6 1  = 12 5   定义三个事件 A A A  , B B B  , C C C   的概率及它们之间的关系: P ( A ) = P ( B ) = P ( C ) = 1 4 P(A) = P(B) = P(C) = \frac{1}{4} P ( A ) = P ( B ) = P ( C ) = 4 1  P ( A B ) = 0 P(AB) = 0 P ( A B ) = 0  (A A A   和 B B B   互斥),则P ( A B C ) = 0 P(ABC)=0 P ( A BC ) = 0 P ( A C ) = P ( B C ) = 1 12 P(AC) = P(BC) = \frac{1}{12} P ( A C ) = P ( BC ) = 12 1   (8) 设 X 1 , X 2 , ⋯   , X 100 X_{1}, X_{2}, \cdots, X_{100} X 1  , X 2  , ⋯ , X 100    为来自总体 X X X   的简单随机样本, 其中 P { X = 0 } = P { X = 1 } = 1 2 . Φ ( x ) P\{X=0\}=P\{X=1\}=\frac{1}{2} . \Phi(x) P { X = 0 } = P { X = 1 } = 2 1  .Φ ( x )   表 示标准正态分布函数, 则利用中心极限定理可得 P { ∑ i = 1 100 X i ⩽ 55 } \displaystyle P\left\{\sum_{i=1}^{100} X_{i} \leqslant 55\right\} P { i = 1 ∑ 100  X i  ⩽ 55 }   的近似值为 ( ) (\quad) ( )   (A) 1 − Φ ( 1 ) 1-\Phi(1) 1 − Φ ( 1 )  .  (B) Φ ( 1 ) \Phi(1) Φ ( 1 )  .  (C) 1 − Φ ( 0.2 ) 1-\Phi(0.2) 1 − Φ ( 0.2 )  .  (D) Φ ( 0.2 ) \Phi(0.2) Φ ( 0.2 )  .
(8) 由列维-林德伯格中心极限定理可知, 考虑独立同分布的随机变量 X 1 , X 2 , ⋯   , X n , ⋯ X_1, X_2, \cdots, X_n, \cdots X 1  , X 2  , ⋯ , X n  , ⋯  . 若它们的期望为 μ \mu μ  , 方差为 σ 2 \displaystyle \sigma^2 σ 2  , 则当 n n n   足够大时, 它们的和 ∑ k = 1 n X k \displaystyle \sum_{k=1}^n X_k k = 1 ∑ n  X k    近似服从正态分布 N ( n μ , n σ 2 ) \displaystyle N\left(n \mu, n \sigma^2\right) N ( n μ , n σ 2 )  . 解题过程 由已知条件可知,样本容量 n = 100 n=100 n = 100  . 根据列维一林德伯格中心极限定理,  ∑ i = 1 100 X i \displaystyle \sum_{i=1}^{100} X_i i = 1 ∑ 100  X i    近似服从均值为 100 E ( X ) 100 E(X) 100 E ( X )   ,方差为 100 D ( X ) 100 D(X) 100 D ( X )   的正态分布. 分别计算 E ( X ) , D ( X ) E(X), D(X) E ( X ) , D ( X )  .  计算 E ( X ) , D ( X ) E(X), D(X) E ( X ) , D ( X )  . E ( X ) = 0 × 1 2 + 1 × 1 2 = 1 2 . \displaystyle E(X)=0 \times \frac{1}{2}+1 \times \frac{1}{2}=\frac{1}{2} . E ( X ) = 0 × 2 1  + 1 × 2 1  = 2 1  . E ( X 2 ) = 0 2 × 1 2 + 1 2 × 1 2 = 1 2 . \displaystyle E\left(X^2\right)=0^2 \times \frac{1}{2}+1^2 \times \frac{1}{2}=\frac{1}{2} . E ( X 2 ) = 0 2 × 2 1  + 1 2 × 2 1  = 2 1  . D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = 1 2 − 1 4 = 1 4 . \displaystyle D(X)=E\left(X^2\right)-[E(X)]^2=\frac{1}{2}-\frac{1}{4}=\frac{1}{4} . D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = 2 1  − 4 1  = 4 1  .  由题设, E X = 1 2 , D X = 1 4 E X=\frac{1}{2}, D X=\frac{1}{4} EX = 2 1  , D X = 4 1   , 且 X i X_i X i    独立同分布, 则 E ( ∑ i = 1 100 X i ) = ∑ i = 1 100 E X i = 100 × E X = 100 × 1 2 = 50 ; \displaystyle E\left(\sum_{i=1}^{100} X_i\right)=\sum_{i=1}^{100} E X_i=100 \times EX=100 \times \frac{1}{2}=50 ; E ( i = 1 ∑ 100  X i  ) = i = 1 ∑ 100  E X i  = 100 × EX = 100 × 2 1  = 50 ; D ( ∑ i = 1 100 X i ) = ∑ i = 1 100 D X i = 100 × D X = 100 × 1 4 = 25. \displaystyle D\left(\sum_{i=1}^{100} X_i\right)=\sum_{i=1}^{100} D X_i=100 \times DX=100 \times \frac{1}{4}=25 . D ( i = 1 ∑ 100  X i  ) = i = 1 ∑ 100  D X i  = 100 × D X = 100 × 4 1  = 25.  由独立同分布的中心极限定理可知 ∑ i = 1 100 X i \displaystyle \sum_{i=1}^{100} X_i i = 1 ∑ 100  X i    近似服从正态分布 N ( n μ , n σ 2 ) = n = 100 ( 50 , 25 ) \displaystyle N(n \mu, n \sigma^2)\xlongequal[]{n=100}(50,25) N ( n μ , n σ 2 ) n = 100  ( 50 , 25 )  , 故P { ∑ i = 1 100 X i ⩽ 55 } = 标准化 P { ∑ i = 1 100 X i − 50 5 ⩽ 55 − 50 5 } = P { ∑ i = 1 100 X i − 50 5 ⩽ 1 } ≈ Φ ( 1 ) . \displaystyle P\left\{\sum_{i=1}^{100} X_i \leqslant 55\right\}\xlongequal[]{\text{标准化}}P\left\{\frac{\sum_{i=1}^{100} X_i-50}{5} \leqslant \frac{55-50}{5}\right\}=P\left\{\frac{\sum_{i=1}^{100} X_i-50}{5} \leqslant 1\right\} \approx \Phi(1) . P { i = 1 ∑ 100  X i  ⩽ 55 } 标准化  P { 5 ∑ i = 1 100  X i  − 50  ⩽ 5 55 − 50  } = P { 5 ∑ i = 1 100  X i  − 50  ⩽ 1 } ≈ Φ ( 1 ) .  二、填空题 (本题共 6 小题,每小题 4 分, 共 24 分, 把答案填在题中横线上.)
(9) lim  x → 0 [ 1 e x − 1 − 1 ln  ( 1 + x ) ] = \displaystyle \lim _{x \rightarrow 0}\left[\frac{1}{\mathrm{e}^{x}-1}-\frac{1}{\ln (1+x)}\right]= x → 0 lim  [ e x − 1 1  − ln ( 1 + x ) 1  ] = 
(9) 答 应填 -1 \displaystyle  原式= lim  x → 0 ln  ( 1 + x ) − ( e x − 1 ) ( e x − 1 ) ln  ( 1 + x ) =\lim _{x \rightarrow 0} \frac{\ln (1+x)-\left(\mathrm{e}^x-1\right)}{\left(\mathrm{e}^x-1\right) \ln (1+x)} = lim x → 0  ( e x − 1 ) l n ( 1 + x ) l n ( 1 + x ) − ( e x − 1 )  = 化简分母 lim  x → 0 ln  ( 1 + x ) − ( e x − 1 ) x 2 \displaystyle \xlongequal[]{\text{化简分母}}\lim _{x \rightarrow 0} \frac{\ln (1+x)-\left(\mathrm{e}^x-1\right)}{x^2} 化简分母  x → 0 lim  x 2 ln ( 1 + x ) − ( e x − 1 )  = 或者洛必达两次 分子用泰勒 lim  x → 0 x − 1 2 x 2 + o ( x 2 ) − [ 1 + x + 1 2 x 2 + o ( x 2 ) − 1 ] x 2 = − 1. \displaystyle \xlongequal[\text{或者洛必达两次}]{\text{分子用泰勒}}\lim _{x \rightarrow 0} \frac{x-\frac{1}{2} x^2+o\left(x^2\right)-\left[1+x+\frac{1}{2} x^2+o\left(x^2\right)-1\right]}{x^2}=-1 . 分子用泰勒 或者洛必达两次  x → 0 lim  x 2 x − 2 1  x 2 + o ( x 2 ) − [ 1 + x + 2 1  x 2 + o ( x 2 ) − 1 ]  = − 1. (10) 设 { x = t 2 + 1 , y = ln  ( t + t 2 + 1 ) , \displaystyle \left\{\begin{array}{l}x=\sqrt{t^{2}+1}, \\ y=\ln \left(t+\sqrt{t^{2}+1}\right),\end{array}\right. { x = t 2 + 1  , y = ln ( t + t 2 + 1  ) ,    则 d 2 y   d x 2 ∣ t = 1 = \left.\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right|_{t=1}=   d x 2 d 2 y   t = 1  = 
(10) 高昆仑版 d y d x ⋅ y t ′ x t ′ = 1 + t 2 t ⋅ 1 t 2 + 1 = 1 t . \displaystyle \frac{dy}{dx} \cdot \frac{y'_t}{x'_t} = \frac{\sqrt{1+t^2}}{t} \cdot \frac{1}{\sqrt{t^2+1}} = \frac{1}{t} . d x d y  ⋅ x t ′  y t ′   = t 1 + t 2   ⋅ t 2 + 1  1  = t 1  . d 2 y d x 2 = ( 1 t ) ′ ⋅ 1 x t ′ = − 1 t 2 ⋅ 1 t 2 + 1 ⋅ t t 2 + 1 = − t 2 + 1 t 3 . \displaystyle \frac{d^2 y}{dx^2} = \left(\frac{1}{t}\right)' \cdot \frac{1}{x'_t} = -\frac{1}{t^2} \cdot \frac{1}{\sqrt{t^2+1}} \cdot \frac{t}{\sqrt{t^2+1}} = -\frac{\sqrt{t^2+1}}{t^3} . d x 2 d 2 y  = ( t 1  ) ′ ⋅ x t ′  1  = − t 2 1  ⋅ t 2 + 1  1  ⋅ t 2 + 1  t  = − t 3 t 2 + 1   . d 2 y d x 2 ∣ t = 1 = − 2 . \displaystyle \left. \frac{d^2 y}{dx^2} \right|_{t=1} = -\sqrt{2} . d x 2 d 2 y   t = 1  = − 2  . 2024版 第一步:d y d x = d y d t d x d t \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} d x d y  = d t d x  d t d y   计算 d y d t \frac{dy}{dt} d t d y  应用求导公式:d y d t = 1 t 2 + 1 \frac{dy}{dt} = \frac{1}{\sqrt{t^2+1}} d t d y  = t 2 + 1  1  使用对数导数公式:[ ln  ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 \left[\ln \left(x+\sqrt{x^2+1}\right)\right]'=\frac{1}{\sqrt{x^2+1}} [ ln ( x + x 2 + 1  ) ] ′ = x 2 + 1  1   若不记得公式,详细计算:d y d t = t 2 + 1 + t ( t + t 2 + 1 ) t 2 + 1 = 1 t 2 + 1 \frac{dy}{dt} = \frac{\sqrt{t^2+1}+t}{\left(t+\sqrt{t^2+1}\right) \sqrt{t^2+1}} = \frac{1}{\sqrt{t^2+1}} d t d y  = ( t + t 2 + 1  ) t 2 + 1  t 2 + 1  + t  = t 2 + 1  1     计算 d x d t \frac{dx}{dt} d t d x  直接计算:d x d t = t t 2 + 1 \frac{dx}{dt} = \frac{t}{\sqrt{t^2+1}} d t d x  = t 2 + 1  t    最终结果:d y d x = 1 t \frac{dy}{dx} = \frac{1}{t} d x d y  = t 1    第二步:计算 d 2 y d x 2 = d d x ( d y d x ) = d d t ( d y d x ) d x d t \frac{d^2 y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} d x 2 d 2 y  = d x d  ( d x d y  ) = d t d x  d t d  ( d x d y  )  求导:d d t ( 1 t ) = − 1 t 2 \frac{d}{dt}\left(\frac{1}{t}\right) = -\frac{1}{t^2} d t d  ( t 1  ) = − t 2 1   最终结果:d 2 y d x 2 = − t 2 + 1 t 3 \frac{d^2 y}{dx^2} = -\frac{\sqrt{t^2+1}}{t^3} d x 2 d 2 y  = − t 3 t 2 + 1     第三步:代入 t = 1 t = 1 t = 1   并计算结果 代入并计算:d 2 y d x 2 ∣ t = 1 = − 1 2 + 1 1 3 = − 2 \left.\frac{d^2 y}{dx^2}\right|_{t=1} = -\frac{\sqrt{1^2+1}}{1^3} = -\sqrt{2} d x 2 d 2 y   t = 1  = − 1 3 1 2 + 1   = − 2    (11) 若函数 f ( x ) f(x) f ( x )   满足 f ′ ′ ( x ) + a f ′ ( x ) + f ( x ) = 0 ( a > 0 ) , f ( 0 ) = m , f ′ ( 0 ) = n f^{\prime \prime}(x)+a f^{\prime}(x)+f(x)=0(a>0), f(0)=m, f^{\prime}(0)=n f ′′ ( x ) + a f ′ ( x ) + f ( x ) = 0 ( a > 0 ) , f ( 0 ) = m , f ′ ( 0 ) = n  , 则 ∫ 0 + ∞ f ( x ) d x = \displaystyle \int_{0}^{+\infty} f(x) \mathrm{d} x= ∫ 0 + ∞  f ( x ) d x = 
(11) 答 应填 a m + n a m+n am + n  . 解直接在微分方程 f ′ ′ ( x ) + a f ′ ( x ) + f ( x ) = 0 \displaystyle f''(x) + a f'(x) + f(x) = 0 f ′′ ( x ) + a f ′ ( x ) + f ( x ) = 0  (a > 0 \displaystyle a > 0 a > 0  )两端作积分 f ′ ( x ) ∣ 0 + ∞ + a f ( x ) ∣ 0 + ∞ + ∫ 0 + ∞ f ( x )   d x = 0. \displaystyle \left. f'(x) \right|_0^{+\infty} + a f(x) \bigg|_0^{+\infty} + \int_0^{+\infty} f(x) \, dx = 0 . f ′ ( x ) ∣ 0 + ∞  + a f ( x )  0 + ∞  + ∫ 0 + ∞  f ( x ) d x = 0. f ( + ∞ ) = lim  x → + ∞ f ( x ) = 0 \displaystyle f(+\infty) = \lim_{x \to +\infty} f(x) = 0 f ( + ∞ ) = x → + ∞ lim  f ( x ) = 0  , f ′ ( + ∞ ) = lim  x → + ∞ f ′ ( x ) = 0 \displaystyle f'(+\infty) = \lim_{x \to +\infty} f'(x) = 0 f ′ ( + ∞ ) = x → + ∞ lim  f ′ ( x ) = 0  ,f ( 0 ) = m , f ′ ( 0 ) = n \displaystyle f(0)=m, f^{\prime}(0)=n f ( 0 ) = m , f ′ ( 0 ) = n 于是,0 − n + a ( 0 − m ) + ∫ 0 + ∞ f ( x )   d x = 0 \displaystyle 0 - n + a(0 - m) + \int_0^{+\infty} f(x) \, dx = 0 0 − n + a ( 0 − m ) + ∫ 0 + ∞  f ( x ) d x = 0  。 故 ∫ 0 + ∞ f ( x )   d x = a m + n \displaystyle \int_0^{+\infty} f(x) \, dx = a m + n ∫ 0 + ∞  f ( x ) d x = am + n   .   为什么f ( + ∞ ) = lim  x → + ∞ f ( x ) = 0 \displaystyle f(+\infty) = \lim_{x \to +\infty} f(x) = 0 f ( + ∞ ) = x → + ∞ lim  f ( x ) = 0  , f ′ ( + ∞ ) = lim  x → + ∞ f ′ ( x ) = 0 \displaystyle f'(+\infty) = \lim_{x \to +\infty} f'(x) = 0 f ′ ( + ∞ ) = x → + ∞ lim  f ′ ( x ) = 0  , 特征方程 λ 2 + a λ + 1 = 0 \displaystyle \lambda^2 + a\lambda + 1 = 0 λ 2 + aλ + 1 = 0  ,且注意到 e − ∞ → 0 \displaystyle e^{-\infty} \to 0 e − ∞ → 0  。 当 0 < a < 2 \displaystyle 0 < a < 2 0 < a < 2   时, f ( x ) = e − a 2 x ( C 1 cos  ( 4 − a 2 2 x ) + C 2 sin  ( 4 − a 2 2 x ) ) . \displaystyle f(x) = e^{-\frac{a}{2}x} \left( C_1 \cos\left(\frac{\sqrt{4-a^2}}{2}x\right) + C_2 \sin\left(\frac{\sqrt{4-a^2}}{2}x\right) \right) . f ( x ) = e − 2 a  x ( C 1  cos ( 2 4 − a 2   x ) + C 2  sin ( 2 4 − a 2   x ) ) .  当 a = 2 \displaystyle a = 2 a = 2   时,f ( x ) = ( C 1 + C 2 x ) e − x . \displaystyle f(x) = (C_1 + C_2 x) e^{-x} . f ( x ) = ( C 1  + C 2  x ) e − x .  当 a > 2 \displaystyle a > 2 a > 2   时,f ( x ) = C 1 e − a − a 2 − 4 2 x + C 2 e − a + a 2 − 4 2 x . \displaystyle f(x) = C_1 e^{\frac{-a-\sqrt{a^2-4}}{2}x} + C_2 e^{\frac{-a+\sqrt{a^2-4}}{2}x} . f ( x ) = C 1  e 2 − a − a 2 − 4   x + C 2  e 2 − a + a 2 − 4   x .    解 直接在考场上有这种估计已经够用了,类似的问题读者还可以参考 2016 年的第(16) 题. (12) 设函数 f ( x , y ) = ∫ 0 x y e x t 2   d t \displaystyle f(x, y)=\int_{0}^{x y} \mathrm{e}^{xt^{2}} \mathrm{~d} t f ( x , y ) = ∫ 0 x y  e x t 2   d t  , 则 ∂ 2 f ∂ x ∂ y ∣ ( 1 , 1 ) = \left.\frac{\partial^{2} f}{\partial x \partial y}\right|_{(1,1)}= ∂ x ∂ y ∂ 2 f   ( 1 , 1 )  = 
(12) 高昆仑版 ∂ f ∂ y ( e x ( x y ) 2 ⋅ x ) = x e x 3 y 2 \displaystyle \frac{\partial f}{\partial y} \left( e^{x(xy)^2} \cdot x \right)= x e^{x^3 y^2} ∂ y ∂ f  ( e x ( x y ) 2 ⋅ x ) = x e x 3 y 2 ⇒ ∂ 2 f ∂ y ∂ x = 先 1 后 2 乘法求导 e x 3 y 2 + x e x 3 y 2 ⋅ 3 x 2 y 2 = e x 3 y 2 + 3 x 3 y 2 e x 3 y 2 . \displaystyle \Rightarrow \frac{\partial^2 f}{\partial y \partial x} \xlongequal[\text{先}1\text{后}2]{\text{乘法求导}}e^{x^3 y^2} + x e^{x^3 y^2} \cdot 3 x^2 y^2 = e^{x^3 y^2} + 3 x^3 y^2 e^{x^3 y^2} . ⇒ ∂ y ∂ x ∂ 2 f  乘法求导 先 1 后 2  e x 3 y 2 + x e x 3 y 2 ⋅ 3 x 2 y 2 = e x 3 y 2 + 3 x 3 y 2 e x 3 y 2 . 因为 ∂ 2 f ∂ y ∂ x \displaystyle \frac{\partial^2 f}{\partial y \partial x} ∂ y ∂ x ∂ 2 f    和 ∂ 2 f ∂ x ∂ y \displaystyle \frac{\partial^2 f}{\partial x \partial y} ∂ x ∂ y ∂ 2 f    在点(1,1)都连续, ∂ 2 f ∂ x ∂ y ∣ ( 1 , 1 ) = ∂ 2 f ∂ y ∂ x ∣ ( 1 , 1 ) = 4 e . \displaystyle \left. \frac{\partial^2 f}{\partial x \partial y} \right|_{(1,1)} = \left. \frac{\partial^2 f}{\partial y \partial x} \right|_{(1,1)} = 4e . ∂ x ∂ y ∂ 2 f   ( 1 , 1 )  = ∂ y ∂ x ∂ 2 f   ( 1 , 1 )  = 4 e . 武忠祥版(先代后求) 解  该问题涉及求函数 f ( x , y ) = ∫ 0 x y e x t 2 d t \displaystyle f(x, y) = \int_{0}^{xy} \mathrm{e}^{xt^{2}} \mathrm{d} t f ( x , y ) = ∫ 0 x y  e x t 2 d t   在点 (1,1) 的二阶混合偏导数 ∂ 2 f ∂ x ∂ y \frac{\partial^{2} f}{\partial x \partial y} ∂ x ∂ y ∂ 2 f   。  计算具体点的混合偏导:可以用先带后求的思想
对x求完偏导以后,x就可以代入了 求函数 f ( x , y ) f(x, y) f ( x , y )   的偏导数。 求 f y ′ ( x , y ) f_y^{\prime}(x, y) f y ′  ( x , y )  。 对 y y y   求偏导得:f y ′ ( x , y ) = e x ( x y ) 2 ⋅ x = x e x 3 y 2 f_y^{\prime}(x, y) = \mathrm{e}^{x(x y)^2} \cdot x=x \mathrm{e}^{x^3 y^2} f y ′  ( x , y ) = e x ( x y ) 2 ⋅ x = x e x 3 y 2  。 先代后求 f y ′ ( x , 1 ) f_y^{\prime}(x, 1) f y ′  ( x , 1 )  。 代入 y = 1 y = 1 y = 1  ,得到:f y ′ ( x , 1 ) = x e x 3 f_y^{\prime}(x, 1) = x \mathrm{e}^{x^3} f y ′  ( x , 1 ) = x e x 3  。   求 f y x ′ ′ ( x , y ) f_{yx}^{\prime\prime}(x, y) f y x ′′  ( x , y )  。 对f y ′ ( x , 1 ) = x e x 3 f_y^{\prime}(x, 1) = x \mathrm{e}^{x^3} f y ′  ( x , 1 ) = x e x 3  两边关于 x x x   求偏导得:f y x ′ ′ ( x , y ) = 1 ⋅ e x 3 + x ⋅ e x 3 ⋅ 3 x 2 = 代入 x = 1 e + 3 e = 4 e f_{yx}^{\prime\prime}(x, y) = 1 \cdot e^{x^3}+x \cdot e^{x^3} \cdot 3 x^2\xlongequal[]{\text{代入}x=1}e+3 e=4 e f y x ′′  ( x , y ) = 1 ⋅ e x 3 + x ⋅ e x 3 ⋅ 3 x 2 代入 x = 1  e + 3 e = 4 e  计算得到:f y x ′ ′ ( 1 , 1 ) = 4 e f_{yx}^{\prime\prime}(1, 1) = 4 \mathrm{e} f y x ′′  ( 1 , 1 ) = 4 e  。   得到最终结果。 在点 (1,1) 的二阶混合偏导数为 4 e 4 \mathrm{e} 4 e  。  (13) 行列式 ∣ a 0 − 1 1 0 a 1 − 1 − 1 1 a 0 1 − 1 0 a ∣ = \displaystyle \left|\begin{array}{cccc}a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a\end{array}\right|=  a 0 − 1 1  0 a 1 − 1  − 1 1 a 0  1 − 1 0 a   = 
(13) 答 应填 a 2 ( a 2 − 4 ) a^2\left(a^2-4\right) a 2 ( a 2 − 4 )  . 如果行列式每行元素之和相等, 都是 s s s  , 则都可以按如下步脁操作 第一步列变换:把其他列都加到第一列 第二步行变换:其他行都减去第一行 第三步展开:按第一列展开  每行元素之和相等 解 ∣ a 0 − 11 0 a 1 − 1 − 11 a 0 1 − 10 a ∣ = c 2 + c 1 ∣ a a 00 0 a 1 − 1 00 a a 1 − 10 a ∣ \displaystyle \left|\begin{array}{cccc}a 0 -1 1 \\ 0 a 1 -1 \\ -1 1 a 0 \\ 1 -1 0 a\end{array}\right| \xlongequal[]{c2+c1}\left|\begin{array}{cccc}a a 0 0 \\ 0 a 1 -1 \\ 0 0 a a \\ 1 -1 0 a\end{array}\right|  a 0 − 11 0 a 1 − 1 − 11 a 0 1 − 10 a   c 2 + c 1   aa 00 0 a 1 − 1 00 aa 1 − 10 a   = 有两列为 0 直接第一列展开 a ( − 1 ) 1 + 1 ∣ a 1 − 1 0 a a − 10 a ∣ + ( − 1 ) 4 + 1 ∣ a 00 a 1 − 1 0 a a ∣ \displaystyle \xlongequal[\text{有两列为}0]{\text{直接第一列展开}}a(-1)^{1+1}\left|\begin{array}{ccc}a 1 -1 \\ 0 a a \\ -1 0 a\end{array}\right|+(-1)^{4+1}\left|\begin{array}{ccc}a 0 0 \\ a 1 -1 \\ 0 a a\end{array}\right| 直接第一列展开 有两列为 0  a ( − 1 ) 1 + 1  a 1 − 1 0 aa − 10 a   + ( − 1 ) 4 + 1  a 00 a 1 − 1 0 aa   = 直接用对角线法则 三阶行列式 a 2 ( a 2 − 2 ) − 2 a 2 = a 2 ( a 2 − 4 ) . \displaystyle \xlongequal[\text{直接用对角线法则}]{\text{三阶行列式}}a^2\left(a^2-2\right)-2 a^2=a^2\left(a^2-4\right) . 三阶行列式 直接用对角线法则  a 2 ( a 2 − 2 ) − 2 a 2 = a 2 ( a 2 − 4 ) .  注 本题也可以将各行都加到第 1 行, 提出公因子 a a a  , 再消零并展开. (14) 设 X X X   服从区间 ( − π 2 , π 2 ) \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) ( − 2 π  , 2 π  )   上的均匀分布, Y = sin  X Y=\sin X Y = sin X  , 则 Cov  ( X , Y ) = \operatorname{Cov}(X, Y)= Cov ( X , Y ) = 
(14) 确定 X X X   的概率密度函数 f ( x ) f(x) f ( x ) X X X   服从区间 ( − π 2 , π 2 ) \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) ( − 2 π  , 2 π  )   上的均匀分布,所以 f ( x ) = { 1 π , x ∈ ( − π 2 , π 2 ) , 0 , 其他. \displaystyle f(x) = \begin{cases}\frac{1}{\pi}, & x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \\ 0, & \text{其他.}\end{cases} f ( x ) = { π 1  , 0 ,  x ∈ ( − 2 π  , 2 π  ) , 其他 .   计算协方差 Cov  ( X , Y ) \operatorname{Cov}(X, Y) Cov ( X , Y ) Cov  ( X , Y ) = Y = s i n X Cov  ( X , sin  X ) = = E ( X Y ) − E X ⋅ E Y E ( X sin  X ) − E ( X ) E ( sin  X ) \operatorname{Cov}(X, Y)\xlongequal[]{Y=sinX}\operatorname{Cov}(X, \sin X)\xlongequal[]{=E(X Y)-E X \cdot E Y}E(X \sin X) - E(X) E(\sin X) Cov ( X , Y ) Y = s in X  Cov ( X , sin X ) = E ( X Y ) − EX ⋅ E Y  E ( X sin X ) − E ( X ) E ( sin X ) 计算 E ( X sin  X ) E(X \sin X) E ( X sin X )  :求谁的期望,就在它前面乘概率密度积分 则期望E ( X sin  X ) = ∫ a b x ⋅ sin  x ⋅ f ( x ) d x ∫ − π 2 π 2 x sin  x ⋅ 1 π d x \displaystyle E(X \sin X) \xlongequal[]{\int_a^b x \cdot \sin x \cdot f(x) d x} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x \cdot \frac{1}{\pi} dx E ( X sin X ) ∫ a b  x ⋅ s i n x ⋅ f ( x ) d x  ∫ − 2 π  2 π   x sin x ⋅ π 1  d x = 区间对称,翻倍 奇 × 奇 = 偶 2 π ∫ 0 π 2 x sin  x d x \displaystyle \xlongequal[\text{区间对称,翻倍}]{\text{奇}\times\text{奇}=\text{偶}}\frac{2}{\pi} \int_0^{\frac{\pi}{2}} x \sin x dx 奇 × 奇 = 偶 区间对称,翻倍  π 2  ∫ 0 2 π   x sin x d x = 分布 − 2 π \cdotp x cos  x ∣ 0 π 2 ⏟ = 0 + 2 π \cdotp ∫ 0 π 2 cos  x   d x ⏟ = 1 = 2 π \displaystyle \xlongequal[]{\text{分布}}\underbrace{-\left.\frac{2}{\pi}\text{·} x \cos x\right|_0 ^{\frac{\pi}{2}}}_{=0}+\frac{2}{\pi}\text{·}\underbrace{ \int_0^{\frac{\pi}{2}} \cos x \mathrm{~d} x}_{=1}=\frac{2}{\pi} 分布  = 0 − π 2  \cdotp x cos x  0 2 π     + π 2  \cdotp = 1 ∫ 0 2 π   cos x   d x   = π 2    计算 E ( X ) E(X) E ( X )   和 E ( sin  X ) E(\sin X) E ( sin X ) E ( X ) = a + b 2 π 2 + ( − π 2 ) 2 = 0 \displaystyle E(X)\xlongequal[]{\frac{a+b}2}\frac{\frac{\pi}{2}+\left(-\frac{\pi}{2}\right)}{2}=0 E ( X ) 2 a + b   2 2 π  + ( − 2 π  )  = 0  合并计算结果:得出协方差 Cov  ( X , Y ) = 2 π − 0 × 0 = 2 π \operatorname{Cov}(X, Y) = \frac{2}{\pi} - 0 \times 0 = \frac{2}{\pi} Cov ( X , Y ) = π 2  − 0 × 0 = π 2    三、解答题 ( 本题共 9 小题, 共 94 分, 解答应写出文字说明、证明过程或演算步骤.)
(15) (本题满分 10 分)  求函数 f ( x , y ) = x 3 + 8 y 3 − x y f(x, y)=x^{3}+8 y^{3}-x y f ( x , y ) = x 3 + 8 y 3 − x y   的极值.
(15) 2025版 (1) 计算 f ( x , y ) f(x, y) f ( x , y )   的驻点. 解 { f x ′ ( x , y ) = 3 x 2 − y = 0 , f y ′ ( x , y ) = 24 y 2 − x = 0. \displaystyle \left\{\begin{array}{l}f_x^{\prime}(x, y)=3 x^2-y=0, \\ f_y^{\prime}(x, y)=24 y^2-x=0 .\end{array}\right. { f x ′  ( x , y ) = 3 x 2 − y = 0 , f y ′  ( x , y ) = 24 y 2 − x = 0.  代入消元法 → y = 3 x 2 24 y 2 − x = 0 \xrightarrow[]{y=3 x^2}24 y^2-x=0 y = 3 x 2  24 y 2 − x = 0  → 24 × 9 x 4 − x = 0 216 x 4 = x → x ( 216 x 3 − 1 ) = 0 \xrightarrow[]{24 \times 9 x^4-x=0}216 x^4=x\xrightarrow[]{x\left(216 x^3-1\right)=0} 24 × 9 x 4 − x = 0  216 x 4 = x x ( 216 x 3 − 1 ) = 0  x = 0 x=0 x = 0   或 x = 1 6 x=\frac{1}{6} x = 6 1   .由x的值解出y,于是, { x = 0 , y = 0 \displaystyle \left\{\begin{array}{l}x=0, \\ y=0\end{array}\right. { x = 0 , y = 0    或 { x = 1 6 , y = 1 12 . \displaystyle \left\{\begin{array}{l}x=\frac{1}{6}, \\ y=\frac{1}{12} .\end{array}\right. { x = 6 1  , y = 12 1  .    为了A C − B 2 AC-B^2 A C − B 2  ,求函数 f ( x , y ) f(x, y) f ( x , y )   在驻点的二阶偏导数 A = f x x ′ ′ ( x , y ) = 3 x 2 − y 对 x 求导 6 x A = f_{xx}^{\prime\prime}(x, y) \xlongequal[]{3x^2 - y\text{对}x\text{求导}} 6x A = f xx ′′  ( x , y ) 3 x 2 − y 对 x 求导  6 x  。B = f x y ′ ′ ( x , y ) = 3 x 2 − y 对 y 求导 − 1 B = f_{xy}^{\prime\prime}(x, y) \xlongequal[]{3x^2 - y\text{对}y\text{求导}} -1 B = f x y ′′  ( x , y ) 3 x 2 − y 对 y 求导  − 1 C = f y y ′ ′ ( x , y ) = 24 y 2 − x 对 y 求导 48 y C = f_{yy}^{\prime\prime}(x, y) \xlongequal[]{24y^2 - x\text{对}y\text{求导}} 48y C = f yy ′′  ( x , y ) 24 y 2 − x 对 y 求导  48 y  用A C − B 2 AC-B^2 A C − B 2  判断驻点是不是极值点 考虑驻点 ( 0 , 0 ) (0,0) ( 0 , 0 )  . A = f x x ′ ′ ( 0 , 0 ) = 0 , B = f x y ′ ′ ( 0 , 0 ) = − 1 , C = f y y ′ ′ ( 0 , 0 ) = 0. A=f_{x x}^{\prime \prime}(0,0)=0, \quad B=f_{x y}^{\prime \prime}(0,0)=-1, \quad C=f_{y y}^{\prime \prime}(0,0)=0 . A = f xx ′′  ( 0 , 0 ) = 0 , B = f x y ′′  ( 0 , 0 ) = − 1 , C = f yy ′′  ( 0 , 0 ) = 0. A C − B 2 = 0 − 1 = − 1 < 0 A C-B^2=0-1=-1<0 A C − B 2 = 0 − 1 = − 1 < 0  , 故点 ( 0 , 0 ) (0,0) ( 0 , 0 )   不是极值点. 考虑驻点 ( 1 6 , 1 12 ) \left(\frac{1}{6}, \frac{1}{12}\right) ( 6 1  , 12 1  )  . A = f x x ′ ′ ( 1 6 , 1 12 ) = 1 , B = f x y ′ ′ ( 1 6 , 1 12 ) = − 1 , C = f y y ′ ′ ( 1 6 , 1 12 ) = 4. A=f_{x x}^{\prime \prime}\left(\frac{1}{6}, \frac{1}{12}\right)=1, \quad B=f_{x y}^{\prime \prime}\left(\frac{1}{6}, \frac{1}{12}\right)=-1, \quad C=f_{y y}^{\prime \prime}\left(\frac{1}{6}, \frac{1}{12}\right)=4 . A = f xx ′′  ( 6 1  , 12 1  ) = 1 , B = f x y ′′  ( 6 1  , 12 1  ) = − 1 , C = f yy ′′  ( 6 1  , 12 1  ) = 4. A C − B 2 = 4 − 1 = 3 > 0 A C-B^2=4-1=3>0 A C − B 2 = 4 − 1 = 3 > 0  , 且 A > 0 A>0 A > 0  , 故点 ( 1 6 , 1 12 ) \left(\frac{1}{6}, \frac{1}{12}\right) ( 6 1  , 12 1  )   为极小值点,极小值为f ( 1 6 , 1 12 ) = f ( x , y ) = x 3 + 8 y 3 − x y 1 6 3 + 8 12 3 − 1 6 × 12 = − 1 216 . f\left(\frac{1}{6}, \frac{1}{12}\right)\xlongequal[]{f(x, y)=x^{3}+8 y^{3}-x y}\frac{1}{6^3}+\frac{8}{12^3}-\frac{1}{6 \times 12}=-\frac{1}{216} . f ( 6 1  , 12 1  ) f ( x , y ) = x 3 + 8 y 3 − x y  6 3 1  + 1 2 3 8  − 6 × 12 1  = − 216 1  .    (16) (本题满分 10 分)  计算曲线积分 I = ∮ L 4 x − y 4 x 2 + y 2   d x + x + y 4 x 2 + y 2   d y I=\oint_{L} \frac{4 x-y}{4 x^{2}+y^{2}} \mathrm{~d} x+\frac{x+y}{4 x^{2}+y^{2}} \mathrm{~d} y I = ∮ L  4 x 2 + y 2 4 x − y    d x + 4 x 2 + y 2 x + y    d y  , 其中 L L L   为 x 2 + y 2 = 2 x^{2}+y^{2}=2 x 2 + y 2 = 2  , 方向为逆时针方向.
(16) 拿到一个平面,如何选取方法, 首先看积分曲线是否封闭,因为 x 2 + y 2 = 2 x^2+y^2=2 x 2 + y 2 = 2  是一个圆心在原点的圆,所以封闭可以用格林公式 但格林公式是有要求的,对于p和q 被积函数在所围成的区域上要有连续一阶偏导 所以分母4 x 2 + y 2 4x^2+y^2 4 x 2 + y 2  不能为0  被积函数存在分母,有奇异点(0,0)   构造辅助路径-做另一个封闭曲线: 取 L 1 L_1 L 1    为 4 x 2 + y 2 = 1 4x^2 + y^2 = 1 4 x 2 + y 2 = 1  ,方向为顺时针方向,相当于在里面做了一个椭圆。 分母可以为1,也可以为任何一个常数 里边为什么补顺时针?为了让它的正方向朝环形区域(沿着方向走的左侧是正方向)  由 L L L   和 L 1 L_1 L 1    围成的平面区域记为 D D D  。 在原曲线和辅助曲线中间的环形区域:应用格林公式: (沿着环形逆时针走左侧是正方向) 将原积分分解为 L + L 1 L + L_1 L + L 1    上的积分减去 L 1 L_1 L 1    上的积分。 对于 L + L 1 L + L_1 L + L 1    上的积分,应用格林公式,将线积分转化为区域 D D D   上的二重面积分。 计算得到 ∬ D [ ∂ ∂ x ( x + y 4 x 2 + y 2 ) − ∂ ∂ y ( 4 x − y 4 x 2 + y 2 ) ] d x d y \iint_D \left[\frac{\partial}{\partial x}\left(\frac{x+y}{4x^2+y^2}\right)- \frac{\partial}{\partial y}\left(\frac{4x-y}{4x^2+y^2}\right)\right] dx dy ∬ D  [ ∂ x ∂  ( 4 x 2 + y 2 x + y  ) − ∂ y ∂  ( 4 x 2 + y 2 4 x − y  ) ] d x d y  ,结果为 0。  计算 L 1 L_1 L 1    上的积分: 对于 L 1 L_1 L 1    上的积分,转化为区域 4 x 2 + y 2 ≤ 1 4x^2 + y^2 \leq 1 4 x 2 + y 2 ≤ 1   上的面积分,因分母为1,  则得到 ∬ 4 x 2 + y 2 ≤ 1 [ ∂ ( x + y ) ∂ x − ∂ ( 4 x − y ) ∂ y ] d x d y = ∬ 4 x 2 + y 2 ≤ 1 2 d x d y \iint_{4x^2+y^2 \leq 1} \left[\frac{\partial(x+y)}{\partial x}- \frac{\partial(4x-y)}{\partial y}\right] dx dy\text{=}\iint_{4x^{2}+y^{2}\leq1}2dxdy ∬ 4 x 2 + y 2 ≤ 1  [ ∂ x ∂ ( x + y )  − ∂ y ∂ ( 4 x − y )  ] d x d y = ∬ 4 x 2 + y 2 ≤ 1  2 d x d y  ,结果为 π \pi π  。  合并结果: 类似的存在奇异点( 0 , 0 ) (0\text{,}0) ( 0 , 0 )  的形式 ∫ L y d x − x d y x 2 + y 2 \displaystyle \int_{L}\frac{ydx-xdy}{x^2+y^2} ∫ L  x 2 + y 2 y d x − x d y  ∫ L x d y − y d x x 2 + y 2 \displaystyle \int_{L}\frac{xdy-ydx}{x^2+y^2} ∫ L  x 2 + y 2 x d y − y d x  ∫ L ( x − y ) d x + ( x + y ) d y ( 4 x 2 + y 2 ) 3 / 2 \displaystyle \int_{L}\frac{(x-y)dx+(x+y)dy}{(4x^2+y^2)^{3/2}} ∫ L  ( 4 x 2 + y 2 ) 3/2 ( x − y ) d x + ( x + y ) d y   这几个积分在做的时候∫ L ( x + y ) d x − ( x − y ) d y x 2 + y 2 \displaystyle \int_{L}\frac{(x+y)dx-(x-y)dy}{x^2+y^2} ∫ L  x 2 + y 2 ( x + y ) d x − ( x − y ) d y   【例】计算曲线积分 I = ∮ L x   d y − y   d x 4 x 2 + y 2 I=\oint_L \frac{x \mathrm{~d} y-y \mathrm{~d} x}{4 x^2+y^2} I = ∮ L  4 x 2 + y 2 x   d y − y   d x   , 其中 L L L   是以点 ( 1 , 0 ) (1,0) ( 1 , 0 )   为中心, R R R   为半径的圆周 ( R > 1 ) (R>1) ( R > 1 )  ,取逆时针方向. (2000 年数学一试题) (17) 设数列 { a n } \left\{a_{n}\right\} { a n  }   满足 a 1 = 1 , ( n + 1 ) a n + 1 = ( n + 1 2 ) a n a_{1}=1,(n+1) a_{n+1}=\left(n+\frac{1}{2}\right) a_{n} a 1  = 1 , ( n + 1 ) a n + 1  = ( n + 2 1  ) a n   , 证明当 ∣ x ∣ < 1 |x|<1 ∣ x ∣ < 1   时, 幂级数 ∑ n = 1 ∞ a n x n \displaystyle \sum_{n=1}^{\infty} a_{n} x^{n} n = 1 ∑ ∞  a n  x n   收玫, 并求其和函数.
(17) 题目中给出了幂级数系数 a n a_n a n    的递推关系式, 要求和函数, 可以利用已知关系构造微分方程, 通过解微分方程求得和函数. 解 计算幂级数的收敛半径 R R R  . 由 ( n + 1 ) a n + 1 = ( n + 1 2 ) a n (n+1) a_{n+1}=\left(n+\frac{1}{2}\right) a_n ( n + 1 ) a n + 1  = ( n + 2 1  ) a n   可得, a n a n + 1 = n + 1 n + 1 2 → 求极限 \displaystyle \frac{a_n}{a_{n+1}}=\frac{n+1}{n+\frac{1}{2}}\xrightarrow[]{\text{求极限}} a n + 1  a n   = n + 2 1  n + 1  求极限   R = lim  n → ∞ ∣ a n a n + 1 ∣ = lim  n → ∞ n + 1 n + 1 2 = 1. \displaystyle R=\lim _{n \rightarrow \infty}\left|\frac{a_n}{a_{n+1}}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{n+\frac{1}{2}}=1 . R = n → ∞ lim   a n + 1  a n    = n → ∞ lim  n + 2 1  n + 1  = 1.  因此, 幂级数的收敛半径 R = 1 R=1 R = 1  . 当 ∣ x ∣ < 1 |x|<1 ∣ x ∣ < 1   时, 幂级数 ∑ n = 1 ∞ a n x n \displaystyle \sum_{n=1}^{\infty} a_n x^n n = 1 ∑ ∞  a n  x n   收敛. S ( x ) = ∑ n = 1 ∞ a n x n \displaystyle S(x)=\sum_{n=1}^{\infty} a_n x^n S ( x ) = n = 1 ∑ ∞  a n  x n S ′ ( x ) = ∑ n = 1 ∞ n a n x n − 1 = 内减外加 内加外减 ∑ n = 0 ∞ ( n + 1 ) a n + 1 x n \displaystyle S^{\prime}(x) =\sum_{n=1}^{\infty} na_n x^{n-1}\xlongequal[\text{内减外加}]{\text{内加外减}}\sum_{n=0}^{\infty} (n+1)a_{n+1} x^n S ′ ( x ) = n = 1 ∑ ∞  n a n  x n − 1 内加外减 内减外加  n = 0 ∑ ∞  ( n + 1 ) a n + 1  x n = a 从 1 开始 拆项 a 1 + ∑ n = 1 ∞ ( n + 1 ) a n + 1 x n \displaystyle \xlongequal[a\text{从}1\text{开始}]{\text{拆项}}a_1+\sum_{n=1}^{\infty}(n+1) a_{n+1} x^n 拆项 a 从 1 开始  a 1  + n = 1 ∑ ∞  ( n + 1 ) a n + 1  x n = 级数转换思想 ( n + 1 ) a n + 1 = ( n + 1 2 ) a n a 1 + ∑ n = 1 ∞ ( n + 1 2 ) a n x n \displaystyle \xlongequal[\text{级数转换思想}]{(n+1) a_{n+1}=\left(n+\frac{1}{2}\right) a_n} a_1+\sum_{n=1}^{\infty}\left(n+\frac{1}{2}\right) a_n x^n ( n + 1 ) a n + 1  = ( n + 2 1  ) a n  级数转换思想  a 1  + n = 1 ∑ ∞  ( n + 2 1  ) a n  x n = a 1 = 1 1 + ∑ n = 1 ∞ ( n + 1 2 ) a n x n \displaystyle \xlongequal[]{a_1=1}1+\sum_{n=1}^{\infty}\left(n+\frac{1}{2}\right) a_n x^n a 1  = 1  1 + n = 1 ∑ ∞  ( n + 2 1  ) a n  x n = 去括号 1 + x ∑ n = 1 ∞ n a n x n − 1 ⏟ S ′ ( x ) + 1 2 ∑ n = 1 ∞ a n x n \displaystyle \xlongequal[]{\text{去括号}}1+x \underbrace{\sum_{n=1}^{\infty} n a_n x^{n-1}}_{S^{\prime}(x)}+\frac{1}{2} \sum_{n=1}^{\infty} a_n x^n 去括号  1 + x S ′ ( x ) n = 1 ∑ ∞  n a n  x n − 1   + 2 1  n = 1 ∑ ∞  a n  x n 从而构造出关于S ′ ( x ) \displaystyle S^{\prime}(x) S ′ ( x )  的微分方程S ′ ( x ) = 1 + x S ′ ( x ) + 1 2 S ( x ) \displaystyle S^{\prime}(x)=1+x S^{\prime}(x)+\frac{1}{2} S(x) S ′ ( x ) = 1 + x S ′ ( x ) + 2 1  S ( x )  解微分方程 ( 1 − x ) S ′ ( x ) − 1 2 S ( x ) = 1 (1-x) S^{\prime}(x)-\frac{1}{2} S(x)=1 ( 1 − x ) S ′ ( x ) − 2 1  S ( x ) = 1 → S ( x ) 替换成 y y ′ − 1 2 ( 1 − x ) y = 1 1 − x \displaystyle \xrightarrow[]{S(x)\text{替换成}y} y^{\prime}-\frac{1}{2(1-x)} y=\frac{1}{1-x} S ( x ) 替换成 y  y ′ − 2 ( 1 − x ) 1  y = 1 − x 1  用一阶线性微分方程求解y = e ∫ 1 2 ( 1 − x ) d x ( ∫ 1 1 − x e − ∫ 1 2 ( 1 − x ) d x d x + C ) \displaystyle y=e^{\int \frac{1}{2(1-x)} d x}\left(\int \frac{1}{1-x} e^{-\int \frac{1}{2(1-x)} d x} d x+C\right) y = e ∫ 2 ( 1 − x ) 1  d x ( ∫ 1 − x 1  e − ∫ 2 ( 1 − x ) 1  d x d x + C ) y = e − ∫ p ( x ) d x [ ∫ Q ( x ) e ∫ p ( x ) d x   d x + C ] . \displaystyle y=\mathrm{e}^{-\int p(x) \mathrm{d} x}\left[\int Q(x) \mathrm{e}^{\int p(x) \mathrm{d} x} \mathrm{~d} x+C\right] . y = e − ∫ p ( x ) d x [ ∫ Q ( x ) e ∫ p ( x ) d x   d x + C ] . e ∫ 1 2 ( 1 − x ) d x = e − 1 2 ln  ( 1 − x ) \displaystyle e^{\int \frac{1}{2(1-x)} dx} = e^{-\frac{1}{2} \ln(1-x)} e ∫ 2 ( 1 − x ) 1  d x = e − 2 1  l n ( 1 − x ) = [ e ln  ( 1 − x ) ] − 1 2 \displaystyle = \left[ e^{\ln(1-x)} \right]^{-\frac{1}{2}} = [ e l n ( 1 − x ) ] − 2 1  = ( 1 − x ) − 1 2 \displaystyle = (1-x)^{-\frac{1}{2}} = ( 1 − x ) − 2 1  = 1 1 − x \displaystyle = \frac{1}{\sqrt{1-x}} = 1 − x  1   = e ∫ 1 2 ( 1 − x ) d x = 1 1 − x 1 1 − x ( ∫ 1 1 − x ⋅ 1 − x ‾ d x + C ) \displaystyle \xlongequal[]{e^{\int \frac{1}{2(1-x)} d x}=\frac{1}{\sqrt{1-x}}}\frac{1}{\sqrt{1-x}}\left(\underline{\int \frac{1}{1-x} \cdot \sqrt{1-x} }d x+C\right) e ∫ 2 ( 1 − x ) 1  d x = 1 − x  1   1 − x  1  ( ∫ 1 − x 1  ⋅ 1 − x   d x + C ) = 整理 1 1 − x ( ∫ 1 1 − x d x + C ) \displaystyle \xlongequal[]{\text{整理}}\frac{1}{\sqrt{1-x}}\left(\int \frac{1}{\sqrt{1-x}} d x+C\right) 整理  1 − x  1  ( ∫ 1 − x  1  d x + C ) = ∫ 1 1 − x d x = − 2 1 − x 积分 1 1 − x ( − 2 1 − x + C ) \displaystyle \xlongequal[\int \frac{1}{\sqrt{1-x}} d x=-2 \sqrt{1-x}]{\text{积分}}\frac{1}{\sqrt{1-x}}(-2 \sqrt{1-x}+C) 积分 ∫ 1 − x  1  d x = − 2 1 − x   1 − x  1  ( − 2 1 − x  + C ) → 整理 y = − 2 + C 1 + x \displaystyle \xrightarrow[]{\text{整理}}y =-2+\frac{C}{\sqrt{1+x}} 整理  y = − 2 + 1 + x  C  当 x = 0 x=0 x = 0   时, y ( 0 ) = S ( 0 ) = 0 y(0)=S(0)=0 y ( 0 ) = S ( 0 ) = 0  , a 1 x + a 2 x 2 + a 3 x 3 + ⋯ = S ( x ) a_1 x+a_2 x^2+a_3 x^3+\cdots=S(x) a 1  x + a 2  x 2 + a 3  x 3 + ⋯ = S ( x )  ,则S ( 0 ) = 0 \displaystyle S(0)=0 S ( 0 ) = 0 故 0 = − 2 + C 0=-2+C 0 = − 2 + C  ,解得 C = 2 C=2 C = 2  .  因此, S ( x ) = 2 1 − x − 2 , x ∈ ( − 1 , 1 ) S(x)=\frac{2}{\sqrt{1-x}}-2, x \in(-1,1) S ( x ) = 1 − x  2  − 2 , x ∈ ( − 1 , 1 )  .  (18) (本题满分 10 分)  设 Σ \displaystyle \Sigma Σ   为曲面 z = x 2 + y 2 ( 1 ⩽ x 2 + y 2 ⩽ 4 ) z=\sqrt{x^{2}+y^{2}}\left(1 \leqslant x^{2}+y^{2} \leqslant 4\right) z = x 2 + y 2  ( 1 ⩽ x 2 + y 2 ⩽ 4 )   的下侧, f ( x ) f(x) f ( x )   是连续函数, 计算 I = ∬ Σ [ x f ( x y ) + 2 x − y ] d y   d z + [ y f ( x y ) + 2 y + x ] d z   d x + [ z f ( x y ) + z ] d x   d y \displaystyle I=\iint_{\Sigma}[x f(x y)+2 x-y] \mathrm{d} y \mathrm{~d} z+[y f(x y)+2 y+x] \mathrm{d} z \mathrm{~d} x+[z f(x y)+z] \mathrm{d} x \mathrm{~d} y I = ∬ Σ  [ x f ( x y ) + 2 x − y ] d y   d z + [ y f ( x y ) + 2 y + x ] d z   d x + [ z f ( x y ) + z ] d x   d y  .
(18) 分析 本题主要考査第二类曲面积分的计算.
本题中的被积函数含有抽象函数 f f f   ,可考虑利用两类曲面积分之间的联系消去该抽象函数。 本题的典型错误:先补面再用高斯公式,
两类曲面积分之间的联系∬ Σ P   d y   d z + Q   d z   d x + R   d x   d y = ∬ Σ ( P cos  α + Q cos  β + R cos  γ ) d S , \displaystyle \iint_{\Sigma} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y=\iint_{\Sigma}(P \cos \alpha+Q \cos \beta+R \cos \gamma) \mathrm{d} S, ∬ Σ  P   d y   d z + Q   d z   d x + R   d x   d y = ∬ Σ  ( P cos α + Q cos β + R cos γ ) d S , 
其中 cos  α , cos  β , cos  γ \cos \alpha, \cos \beta, \cos \gamma cos α , cos β , cos γ   为有向曲面 Σ \displaystyle \Sigma Σ   在点 ( x , y , z ) (x, y, z) ( x , y , z )   处的法向量的方向余弦. 设有向曲面方程为 z = z ( x , y ) z=z(x, y) z = z ( x , y )  , 取上侧. 由于有向曲面 Σ \displaystyle \Sigma Σ   取上侧 公式推导: \displaystyle  设z = z ( x , y ) z=z(x, y) z = z ( x , y )  ,取上侧 F ( x , y , z ) = 0 \displaystyle F(x, y, z)=0 F ( x , y , z ) = 0  ,令 F ( x , y , z ) = z − z ( x , y ) F(x, y, z)=z-z(x, y) F ( x , y , z ) = z − z ( x , y ) n ⃗ = ( F x ′ , F y ′ , F z ′ ) = ( − z y ′ , − z y ′ , 1 ) \displaystyle \vec{n}=\left(F_x^{\prime}, F_y^{\prime}, F_z^{\prime}\right)=\left(-z_y^{\prime},-z_y^{\prime}, 1\right) n = ( F x ′  , F y ′  , F z ′  ) = ( − z y ′  , − z y ′  , 1 ) 故 Σ \displaystyle \Sigma Σ   的法向量的方向余弦为cos  = n ⃗ ∥ n ⃗ ∥ \displaystyle \cos =\frac{\vec{n}}{\|\vec{n}\|} cos = ∥ n ∥ n  cos  α = − z x ′ 1 + z x ′ 2 + z y ′ 2 , cos  β = − z y ′ 1 + z x ′ 2 + z y ′ 2 , cos  γ = 1 1 + z x ′ 2 + z y ′ 2 . \displaystyle \cos \alpha=\frac{-z_x^{\prime}}{\sqrt{1+z_x^{\prime 2}+z_y^{\prime 2}}}, \quad \cos \beta=\frac{-z_y^{\prime}}{\sqrt{1+z_x^{\prime 2}+z_y^{\prime 2}}}, \quad \cos \gamma=\frac{1}{\sqrt{1+z_x^{\prime 2}+z_y^{\prime 2}}} . cos α = 1 + z x ′2  + z y ′2   − z x ′   , cos β = 1 + z x ′2  + z y ′2   − z y ′   , cos γ = 1 + z x ′2  + z y ′2   1  .   由于曲面 Σ \displaystyle \Sigma Σ   取下侧,故 Σ \displaystyle \Sigma Σ   的法向是 n n n   与 z z z   轴正向成钝角
F ( x , y , z ) = z − x 2 + y 2 F(x, y, z)=z-\sqrt{x^2+y^2} F ( x , y , z ) = z − x 2 + y 2  
向上的法向量n ⃗ = ( F x ′ , F y ′ , F z ′ ) = ( − z y ′ , − z y ′ , 1 ) \displaystyle \vec{n}=\left(F_x^{\prime}, F_y^{\prime}, F_z^{\prime}\right)=\left(-z_y^{\prime},-z_y^{\prime}, 1\right) n = ( F x ′  , F y ′  , F z ′  ) = ( − z y ′  , − z y ′  , 1 ) 
向下的法向量n = ( z y ′ , z y ′ , − 1 ) = ( x x + y 2 , y x + y 2 , − 1 ) = z = x 2 + y 2 ( x z , y z , − 1 ) n=\left(z_y^{\prime},z_y^{\prime}, -1\right) =\left(\frac{x}{\sqrt{x+y^2}}, \frac{y}{\sqrt{x+y^2}},-1\right)\xlongequal[]{z=\sqrt{x^{2}+y^{2}}}\left(\frac{x}{z}, \frac{y}{z},-1\right) n = ( z y ′  , z y ′  , − 1 ) = ( x + y 2  x  , x + y 2  y  , − 1 ) z = x 2 + y 2   ( z x  , z y  , − 1 ) z = x 2 + y 2 \displaystyle z=\sqrt{x^{2}+y^{2}} z = x 2 + y 2  z x = x x 2 + y 2 = x z \displaystyle z_x=\frac{x}{\sqrt{x^2+y^2}}=\frac{x}{z} z x  = x 2 + y 2  x  = z x  z y = y x 2 + y 2 = y z \displaystyle z_y=\frac{y}{\sqrt{x^2+y^2}}=\frac{y}{z} z y  = x 2 + y 2  y  = z y   I = ∬ Σ [ x f ( x y ) + 2 x − y ] d y   d z + [ y f ( x y ) + 2 y + x ] d z   d x + [ z f ( x y ) + z ] d x   d y \displaystyle I=\iint_{\Sigma}[x f(x y)+2 x-y] \mathrm{d} y \mathrm{~d} z+[y f(x y)+2 y+x] \mathrm{d} z \mathrm{~d} x+[z f(x y)+z] \mathrm{d} x \mathrm{~d} y I = ∬ Σ  [ x f ( x y ) + 2 x − y ] d y   d z + [ y f ( x y ) + 2 y + x ] d z   d x + [ z f ( x y ) + z ] d x   d y 
∬ Σ = ∬ D ( P z x + Q z y − R ) d x d y \displaystyle \iint_{\Sigma} =\iint_D\left(P z_x+Q z_y-R\right) d x d y ∬ Σ  = ∬ D  ( P z x  + Q z y  − R ) d x d y 
= ∬ D [ ( x ⋅ f + 2 x − y ) x z + ( y ⋅ f + 2 y + x ) y z − z f − z ) ] d x d y \displaystyle \left.=\iint_D\left[(x \cdot f+2 x-y) \frac{x}{z}+(y \cdot f+2 y+x) \frac{y}{z}-z f-z\right)\right] d x d y = ∬ D  [ ( x ⋅ f + 2 x − y ) z x  + ( y ⋅ f + 2 y + x ) z y  − z f − z ) ] d x d y = 合并同类项 ∬ Σ [ ( x 2 + y 2 z − z ) f ( x y ) + 2 ( x 2 + y 2 ) z − z ] d x   d y \displaystyle \xlongequal[]{\text{合并同类项}}\iint_{\Sigma}\left[\left(\frac{x^2+y^2}{z}-z\right) f(x y)+\frac{2\left(x^2+y^2\right)}{z}-z\right] \mathrm{d} x \mathrm{~d} y 合并同类项  ∬ Σ  [ ( z x 2 + y 2  − z ) f ( x y ) + z 2 ( x 2 + y 2 )  − z ] d x   d y = 全打散拆开 x 2 z f + 2 x 2 z − x y z + y 2 z f + 2 y 2 z + x y z − z ⋅ f − z → z 2 = x 2 + y 2 化简 z \displaystyle \xlongequal[]{\text{全打散拆开}}\frac{x^2}{z} f+\frac{2 x^2}{z}-\frac{x y}{z}+\frac{y^2}{z} f+\frac{2 y^2}{z}+\frac{x y}{z}-z \cdot f-z\xrightarrow[z^2=x^{2}+y^{2}]{\text{化简}}z 全打散拆开  z x 2  f + z 2 x 2  − z x y  + z y 2  f + z 2 y 2  + z x y  − z ⋅ f − z 化简 z 2 = x 2 + y 2  z ∬ Σ z   d x   d y = Σ  取下侧  ∬ D x 2 + y 2   d x   d y \displaystyle \iint_{\Sigma} z \mathrm{~d} x \mathrm{~d} y \xlongequal{\Sigma \text { 取下侧 }} \iint_D \sqrt{x^2+y^2} \mathrm{~d} x \mathrm{~d} y ∬ Σ  z   d x   d y Σ   取下侧   ∬ D  x 2 + y 2    d x   d y = 极坐标 ∫ 0 2 π   d θ ∫ 1 2 r 2   d r = 2 π ⋅ r 3 3 ∣ 1 2 = 14 π 3 . \displaystyle \xlongequal[]{\text{极坐标}}\int_0^{2 \pi} \mathrm{~d} \theta \int_1^2 r^2 \mathrm{~d} r=\left.2 \pi \cdot \frac{r^3}{3}\right|_1 ^2=\frac{14 \pi}{3} . 极坐标  ∫ 0 2 π    d θ ∫ 1 2  r 2   d r = 2 π ⋅ 3 r 3   1 2  = 3 14 π  . (19) (本题满分 10 分)  设函数 f ( x ) f(x) f ( x )   在区间 [ 0 , 2 ] [0,2] [ 0 , 2 ]   上具有连续导数, f ( 0 ) = f ( 2 ) = 0 , M = max  x ∈ [ 0 , 2 ] { ∣ f ( x ) ∣ } f(0)=f(2)=0, M=\max _{x \in[0,2]}\{|f(x)|\} f ( 0 ) = f ( 2 ) = 0 , M = max x ∈ [ 0 , 2 ]  { ∣ f ( x ) ∣ }  . 证明:  ( I ) 存在 ξ ∈ ( 0 , 2 ) \xi \in(0,2) ξ ∈ ( 0 , 2 )  , 使得 ∣ f ′ ( ξ ) ∣ ⩾ M \left|f^{\prime}(\xi)\right| \geqslant M ∣ f ′ ( ξ ) ∣ ⩾ M  ;  (II) 若对任意的 x ∈ ( 0 , 2 ) , ∣ f ′ ( x ) ∣ ⩽ M x \in(0,2),\left|f^{\prime}(x)\right| \leqslant M x ∈ ( 0 , 2 ) , ∣ f ′ ( x ) ∣ ⩽ M  , 则 M = 0 M=0 M = 0  .
(19) 证明 (I) 存在 ξ ∈ ( 0 , 2 ) \xi \in(0,2) ξ ∈ ( 0 , 2 )   使得 ∣ f ′ ( ξ ) ∣ ⩾ M \left|f^{\prime}(\xi)\right| \geqslant M ∣ f ′ ( ξ ) ∣ ⩾ M  设存在 ∣ f ( c ) ∣ = M |f(c)|=M ∣ f ( c ) ∣ = M 若 c = 0 c=0 c = 0   或 2 2 2 f ( x ) ≡ 0 f(x) \equiv 0 f ( x ) ≡ 0  ,由罗尔定理 f ′ ( x ) = 0 f^{\prime}(x)=0 f ′ ( x ) = 0  , x ∈ [ 0 , 2 ] x \in[0,2] x ∈ [ 0 , 2 ]  若 c ∈ ( 0 , 1 ] c \in(0,1] c ∈ ( 0 , 1 ] 应用拉格朗日中值定理 存在 ξ ∈ ( 0 , c ) \xi \in(0, c) ξ ∈ ( 0 , c )  ,使 f ′ ( ξ ) = f ( c ) − f ( 0 ) c f^{\prime}(\xi)=\frac{f(c)-f(0)}{c} f ′ ( ξ ) = c f ( c ) − f ( 0 )   得 ∣ f ′ ( ξ ) ∣ = M c ⩾ M \left|f^{\prime}(\xi)\right|=\frac{M}{c} \geqslant M ∣ f ′ ( ξ ) ∣ = c M  ⩾ M    若 c ∈ ( 1 , 2 ) c \in(1,2) c ∈ ( 1 , 2 ) 同理存在 ξ ∈ ( c , 2 ) \xi \in(c, 2) ξ ∈ ( c , 2 ) f ′ ( ξ ) = f ( 2 ) − f ( c ) 2 − c f^{\prime}(\xi)=\frac{f(2)-f(c)}{2-c} f ′ ( ξ ) = 2 − c f ( 2 ) − f ( c )  得 ∣ f ′ ( ξ ) ∣ = M 2 − c ⩾ M \left|f^{\prime}(\xi)\right|=\frac{M}{2-c} \geqslant M ∣ f ′ ( ξ ) ∣ = 2 − c M  ⩾ M     证明 (II) 若 ∣ f ′ ( x ) ∣ ⩽ M \left|f^{\prime}(x)\right| \leqslant M ∣ f ′ ( x ) ∣ ⩽ M   则 M = 0 M=0 M = 0  提出假设 (反证法) 假设 M > 0 M>0 M > 0 则 c ≠ 0 , 2 c \neq 0,2 c  = 0 , 2  分析 c ∈ ( 0 , 1 ) c \in(0,1) c ∈ ( 0 , 1 ) 应用Newton-Leibniz公式 M = ∣ f ( c ) − f ( 0 ) ∣ = ∣ ∫ 0 c f ′ ( x ) d x ∣ \displaystyle M=|f(c)-f(0)|=\left|\int_0^c f^{\prime}(x) \mathrm{d} x\right| M = ∣ f ( c ) − f ( 0 ) ∣ =  ∫ 0 c  f ′ ( x ) d x  得 M ⩽ M c M \leqslant M c M ⩽ M c  ,矛盾,故 M = 0 M=0 M = 0    分析 c ∈ ( 1 , 2 ) c \in(1,2) c ∈ ( 1 , 2 ) 类似地使用Newton-Leibniz公式 M = ∣ f ( c ) ∣ = ∣ f ( 2 ) − f ( c ) ∣ = ∣ ∫ c 2 f ′ ( x ) d x ∣ \displaystyle M=|f(c)|=|f(2)-f(c)|=\left|\int_c^2 f^{\prime}(x) \mathrm{d} x\right| M = ∣ f ( c ) ∣ = ∣ f ( 2 ) − f ( c ) ∣ =  ∫ c 2  f ′ ( x ) d x  得 M ⩽ M ( 2 − c ) M \leqslant M(2-c) M ⩽ M ( 2 − c )  ,矛盾,故 M = 0 M=0 M = 0    分析 c = 1 c=1 c = 1 假设 f ( 1 ) = M f(1)=M f ( 1 ) = M  ,由费马引理得 f ′ ( 1 ) = 0 f^{\prime}(1)=0 f ′ ( 1 ) = 0  设 G ( x ) = f ( x ) − M x G(x)=f(x)-M x G ( x ) = f ( x ) − M x  ,0 ⩽ x ⩽ 1 0 \leqslant x \leqslant 1 0 ⩽ x ⩽ 1 G ′ ( x ) ⩽ 0 G^{\prime}(x) \leqslant 0 G ′ ( x ) ⩽ 0  ,G ( x ) G(x) G ( x )   单调不增G ( x ) ≡ 0 G(x) \equiv 0 G ( x ) ≡ 0  ,得 f ( x ) = M x f(x)=M x f ( x ) = M x f ′ ( 1 ) = 0 f^{\prime}(1)=0 f ′ ( 1 ) = 0  ,得 M = 0 M=0 M = 0     (20) (本题满分 11 分)  设二次型 f ( x 1 , x 2 ) = x 1 2 − 4 x 1 x 2 + 4 x 2 2 f\left(x_{1}, x_{2}\right)=x_{1}^{2}-4 x_{1} x_{2}+4 x_{2}^{2} f ( x 1  , x 2  ) = x 1 2  − 4 x 1  x 2  + 4 x 2 2    经正交变换 ( x 1 x 2 ) = Q ( y 1 y 2 ) \displaystyle \left(\begin{array}{l}x_{1} \\ x_{2}\end{array}\right)=\boldsymbol{Q}\left(\begin{array}{l}y_{1} \\ y_{2}\end{array}\right) ( x 1  x 2   ) = Q ( y 1  y 2   )   化为二次型 g ( y 1 , y 2 ) = a y 1 2 + 4 y 1 y 2 + b y 2 2 g\left(y_{1}, y_{2}\right)=a y_{1}^{2}+4 y_{1} y_{2}+b y_{2}^{2} g ( y 1  , y 2  ) = a y 1 2  + 4 y 1  y 2  + b y 2 2   , 其中 a ⩾ b a \geqslant b a ⩾ b  .  (I) 求 a , b a, b a , b   的值;  (II) 求正交矩阵 Q Q Q  .
(20) (1) 由题意,二次型 f ( x 1 , x 2 ) \displaystyle f(x_1, x_2) f ( x 1  , x 2  )   与 g ( y 1 , y 2 ) \displaystyle g(y_1, y_2) g ( y 1  , y 2  )   的矩阵分别为
A = ( 1 − 2 − 24 ) , B = ( a 2 2 b ) , \displaystyle A = \begin{pmatrix} 1 -2 \\ -2 4 \end{pmatrix}, \quad B = \begin{pmatrix} a 2 \\ 2 b \end{pmatrix}, A = ( 1 − 2 − 24  ) , B = ( a 2 2 b  ) , A A A  可以经过正交变换得到B B B 
于是 A \displaystyle A A   与 B \displaystyle B B   相似,所以 \displaystyle  tr( A ) = (A) = ( A ) =  tr( B ) (B) ( B )  ,∣ A ∣ = ∣ B ∣ \displaystyle |A| = |B| ∣ A ∣ = ∣ B ∣  , 即{ a + b = 5 , a b − 4 = 0. \displaystyle \begin{cases} a + b = 5, \\ ab - 4 = 0. \end{cases} { a + b = 5 , ab − 4 = 0.    又 a ≥ b \displaystyle a \geq b a ≥ b  ,解得 a = 4 , b = 1 \displaystyle a = 4, b = 1 a = 4 , b = 1  。 思路
\begin{cases}  \text{(1) 二次型 } & x^T A x \xrightarrow[]{\text{可逆 } x = C y} \text{ 二次型 } y^T B y  \Rightarrow A \text{ 与 } B \text{ 合同,但不一定相似} \
\text{计算思路}&\quad x^T A x \xrightarrow[]{\text{可逆 } x = C z} \text{同一标准型} \xleftarrow[]{\text{可逆 } y = C_2 z} y^T B y \  &\Rightarrow C_1^T A C_1 = C_2^T B C_2 \rightarrow (C_1 C_2{-1}) T A (C_1 C_2^{-1}) = B \
\
\text{(2) 二次型 }& x^T A x \xrightarrow[]{\text{正交 } x = Q y} \text{ 二次型 } y^T B y  \Rightarrow A \text{ 与 } B \text{ 合同且相似} \
\text{计算思路} & \quad x^T A x \xrightarrow[]{\text{正交 } x = Q z} \text{同一标准型} \xleftarrow[]{\text{正交 } y = Q z} y^T B y \  &\Rightarrow Q^T A Q = Q^T B Q \rightarrow (Q Q{-1}) T A (Q Q^{-1}) = B  \end
由第( I ) 问可知, A = ( 1 − 2 − 2 4 ) , B = ( 4 2 2 1 ) \displaystyle \boldsymbol{A}=\left(\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right), \boldsymbol{B}=\left(\begin{array}{ll}4 & 2 \\ 2 & 1\end{array}\right) A = ( 1 − 2  − 2 4  ) , B = ( 4 2  2 1  )  .
思路:( Q 1 Q 2 − 1 ) ⊤ A ( Q 1 Q 2 − 1 ) = B \displaystyle \left(Q_1 Q_2^{-1}\right)^{\top} A\left(Q_1 Q_2^{-1}\right)=B ( Q 1  Q 2 − 1  ) ⊤ A ( Q 1  Q 2 − 1  ) = B 
求A矩阵的特征值,求B矩阵的特征值(A和B相似)
∣ A − λ E ∣ = ∣ 1 − λ − 2 − 2 4 − λ ∣ = λ 2 − 5 λ + 4 − 4 = λ ( λ − 5 ) = 0 \displaystyle |A-\lambda E|=\left|\begin{array}{cc}1-\lambda & -2 \\ -2 & 4-\lambda\end{array}\right|=\lambda^2-5 \lambda+4-4=\lambda(\lambda-5)=0 ∣ A − λ E ∣ =  1 − λ − 2  − 2 4 − λ   = λ 2 − 5 λ + 4 − 4 = λ ( λ − 5 ) = 0 λ 1 = 0. λ 2 = 5 \displaystyle \lambda_1=0 . \quad \lambda_2=5 λ 1  = 0. λ 2  = 5 A和B相似,所以,B的特征值等于A的特征值 求A矩阵的特征向量,用来构造可逆矩阵Q 1 Q_1 Q 1  
计算A的属于特征值0的特征向量. λ = 0. A x = 0. ( 1 − 2 − 2 4 ) → ( 1 − 2 0 0 ) α 1 = ( 2 1 ) \displaystyle \lambda=0 . \quad A x=0 . \quad\left(\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right) \rightarrow\left(\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right) \quad \alpha_1=\binom{2}{1} λ = 0. A x = 0. ( 1 − 2  − 2 4  ) → ( 1 0  − 2 0  ) α 1  = ( 1 2  )  计算A的属于特征值5的特征向量 λ = 5. ( A − 5 E ) X = 0 ( − 4 − 2 − 2 − 1 ) → ( 2 1 0 0 ) α 2 = ( 1 − 2 ) \displaystyle \lambda=5 . \quad(A-5 E) X=0 \quad\left(\begin{array}{ll}-4 & -2 \\ -2 & -1\end{array}\right) \rightarrow\left(\begin{array}{ll}2 & 1 \\ 0 & 0\end{array}\right) \quad \alpha_2=\binom{1}{-2} λ = 5. ( A − 5 E ) X = 0 ( − 4 − 2  − 2 − 1  ) → ( 2 0  1 0  ) α 2  = ( − 2 1  )  对特征向量单位化γ 1 = 1 5 ( 2 1 ) γ 2 = 1 5 ( 1 − 2 ) \displaystyle \gamma_1=\frac{1}{\sqrt{5}}\binom{2}{1} \quad \gamma_2=\frac{1}{\sqrt{5}}\binom{1}{-2} γ 1  = 5  1  ( 1 2  ) γ 2  = 5  1  ( − 2 1  )  经正交变换x = Q z = ( 2 5 1 5 1 5 − 2 5 ) z . \displaystyle x=Qz=\left(\begin{array}{cc}\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}}\end{array}\right) z . x = Q z = ( 5  2  5  1   5  1  5  − 2   ) z . 使得f → 可化标准型 5 z 2 2 \displaystyle f \xrightarrow[]{\text{可化标准型}}5 z_2^2 f 可化标准型  5 z 2 2    求B矩阵的特征向量,用来构造可逆矩阵Q 2 Q_2 Q 2  
计算B的属于特征值0的特征向量. λ = 0. B x = 0 ( 42 21 ) → ( 21 00 ) β 1 = ( 1 − 2 ) \displaystyle \lambda=0 . \quad B x=0 \quad\left(\begin{array}{cc}4 2 \\2 1\end{array}\right) \rightarrow\left(\begin{array}{ll}2 1 \\0 0\end{array}\right) \quad \beta_1=\binom{1}{-2} λ = 0. B x = 0 ( 42 21  ) → ( 21 00  ) β 1  = ( − 2 1  )  计算B的属于特征值5的特征向量. λ = 5 ( B − 5 E ) x = 0 ( − 12 2 − 4 ) → ( 1 − 2 00 ) β 2 = ( 2 1 ) \displaystyle \lambda=5 \quad(B-5 E) x=0 \quad\left(\begin{array}{cc}-1 2 \\2 -4\end{array}\right) \rightarrow\left(\begin{array}{cc}1 -2 \\0 0\end{array}\right) \quad \beta_2=\binom{2}{1} λ = 5 ( B − 5 E ) x = 0 ( − 12 2 − 4  ) → ( 1 − 2 00  ) β 2  = ( 1 2  )  则有正交变换 y = Q 2 z = ( 1 5 2 5 − 2 5 1 5 ) z . \displaystyle y=Q_2 z=\left(\begin{array}{cc}\frac{1}{5} \frac{2}{\sqrt{5}} \\-\frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}}\end{array}\right) z . y = Q 2  z = ( 5 1  5  2  − 5  2  5  1   ) z . 使得g → 可化标准型为 5 z 2 2 \displaystyle g \xrightarrow[]{\text{可化标准型为}} 5 z_2^2 g 可化标准型为  5 z 2 2    Q 1 ⊤ A Q 1 = ( 0 5 ) = Q 2 ⊤ B Q 2 → 从而 Q 1 ⊤ A Q 1 = Q 2 ⊤ B Q 2 \displaystyle Q_1^{\top} A Q_1=\left(\begin{array}{ll}0 \\5\end{array}\right)=Q_2^{\top} B Q_2\xrightarrow[]{\text{从而}}Q_1^{\top} A Q_1=Q_2^{\top} B Q_2 Q 1 ⊤  A Q 1  = ( 0 5  ) = Q 2 ⊤  B Q 2  从而  Q 1 ⊤  A Q 1  = Q 2 ⊤  B Q 2  
→ 移项 ( Q 1 Q 2 − 1 ) ⊤ A ( Q 1 Q 2 − 1 ) = B \displaystyle \xrightarrow[]{\text{移项}}\left(Q_1 Q_2^{-1}\right)^{\top} A\left(Q_1 Q_2^{-1}\right)=B 移项  ( Q 1  Q 2 − 1  ) ⊤ A ( Q 1  Q 2 − 1  ) = B Q = Q 1 Q 2 − 1 = 正交 Q 1 Q 2 T = ( 2 5 1 5 1 5 − 2 5 ) ( 1 5 − 2 5 2 5 1 5 ) = ( 4 5 − 3 5 − 3 5 − 4 5 ) \displaystyle Q=Q_1 Q_2^{-1}\xlongequal[]{\text{正交}}Q_1 Q_2^{T}=\left(\begin{array}{cc}\frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} \\\frac{1}{\sqrt{5}} -\frac{2}{\sqrt{5}}\end{array}\right)\left(\begin{array}{cc}\frac{1}{\sqrt{5}} -\frac{2}{\sqrt{5}} \\\frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}}\end{array}\right)=\left(\begin{array}{cc}\frac{4}{5} -\frac{3}{5} \\-\frac{3}{5} -\frac{4}{5}\end{array}\right) Q = Q 1  Q 2 − 1  正交  Q 1  Q 2 T  = ( 5  2  5  1  5  1  − 5  2   ) ( 5  1  − 5  2  5  2  5  1   ) = ( 5 4  − 5 3  − 5 3  − 5 4   ) 
2015 年数一、数二、数三试题 设矩阵 A = ( 0 2 − 3 − 1 3 − 3 1 − 2 a ) \displaystyle \boldsymbol{A}=\left(\begin{array}{ccc}0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & a\end{array}\right) A =  0 − 1 1  2 3 − 2  − 3 − 3 a     相似于矩阵 B = ( 1 − 2 0 0 b 0 0 3 1 ) \displaystyle \boldsymbol{B}=\left(\begin{array}{ccc}1 & -2 & 0 \\ 0 & b & 0 \\ 0 & 3 & 1\end{array}\right) B =  1 0 0  − 2 b 3  0 0 1    . (I) 求 a , b a, b a , b   的值; (II) 求可逆矩阵 P P P  , 使 P − 1 A P P^{-1} A P P − 1 A P   为对角矩阵.
2019 年数一、数二、数三试题 已知矩阵 A = ( − 2 − 2 1 2 x − 2 0 0 − 2 ) \displaystyle \boldsymbol{A}=\left(\begin{array}{ccc}-2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2\end{array}\right) A =  − 2 2 0  − 2 x 0  1 − 2 − 2     与 B = ( 2 1 0 0 − 1 0 0 0 y ) \displaystyle \boldsymbol{B}=\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y\end{array}\right) B =  2 0 0  1 − 1 0  0 0 y     相似. (I) 求 x , y x, y x , y  ; (II) 求可逆矩阵 P P P  , 使得 P − 1 A P = B P^{-1} A P=B P − 1 A P = B  .
(21) (本题满分 11 分) 设 A \boldsymbol{A} A   为 2 阶矩阵, P = ( α , A α ) \boldsymbol{P}=(\boldsymbol{\alpha}, \boldsymbol{A} \boldsymbol{\alpha}) P = ( α , A α )  , 其中 α \boldsymbol{\alpha} α   是非零向量且不是 A \boldsymbol{A} A   的特征向量.  ( I ) 证明 P \boldsymbol{P} P   为可逆矩阵;  (II) 若 A 2 α + A α − 6 α = 0 \boldsymbol{A}^{2} \boldsymbol{\alpha}+\boldsymbol{A} \boldsymbol{\alpha}-6 \boldsymbol{\alpha}=\mathbf{0} A 2 α + A α − 6 α = 0  , 求 P − 1 A P \boldsymbol{P}^{-1} \boldsymbol{A P} P − 1 AP  , 并判断 A \boldsymbol{A} A   是否相似于对角矩阵.
(21) 反证法 若 P \displaystyle P P   不可逆,∣ α , A α ∣ = 0 ⇒ α \displaystyle |\alpha, A\alpha| = 0 \Rightarrow \alpha ∣ α , A α ∣ = 0 ⇒ α   与 A α \displaystyle A\alpha A α   相关 ⇒ α \displaystyle \Rightarrow \alpha ⇒ α  ,A α \displaystyle A\alpha A α   成比例 则 ∃ k \displaystyle \exists k ∃ k  ,使 A α = k α \displaystyle A\alpha = k\alpha A α = k α  ,说明 α \displaystyle \alpha α   为 A \displaystyle A A   对应于 λ = k \displaystyle \lambda = k λ = k   的特征向量,与题中条件相悖 题中条件:其中 α \boldsymbol{\alpha} α   是非零向量且不是 A \boldsymbol{A} A   的特征向量.    ∴ P \displaystyle \therefore P ∴ P  可逆  (II) 若 A 2 α + A α − 6 α = 0 \boldsymbol{A}^{2} \boldsymbol{\alpha}+\boldsymbol{A} \boldsymbol{\alpha}-6 \boldsymbol{\alpha}=\mathbf{0} A 2 α + A α − 6 α = 0  , 求 P − 1 A P \boldsymbol{P}^{-1} \boldsymbol{A P} P − 1 AP  , 并判断 A \boldsymbol{A} A   是否相似于对角矩阵.\displaystyle  设P − 1 A P = B → 左乘 P A P = P B P_{}^{-1} A P=B \xrightarrow[]{\text{左乘}P} A P=P B P − 1  A P = B 左乘 P  A P = PB A ( α ⋅ A α ) = ( α ⋅ A α ) B . \displaystyle A(\alpha \cdot A \alpha)=(\alpha \cdot A \alpha) B . A ( α ⋅ A α ) = ( α ⋅ A α ) B . → P = ( α , A α ) ( α ⋅ A α ) B = ( A α ⋅ A 2 α ) \displaystyle \xrightarrow[]{\boldsymbol{P}=(\boldsymbol{\alpha}, \boldsymbol{A} \boldsymbol{\alpha})}(\alpha \cdot A \alpha) B=\left(A \alpha \cdot A^2 \alpha\right) P = ( α , A α )  ( α ⋅ A α ) B = ( A α ⋅ A 2 α ) → A 2 α + A α − 6 α = 0 ( A α \displaystyle \xrightarrow[]{\boldsymbol{A}^{2} \boldsymbol{\alpha}+\boldsymbol{A} \boldsymbol{\alpha}-6 \boldsymbol{\alpha}=\mathbf{0}}(A \alpha A 2 α + A α − 6 α = 0  ( A α  ,6 α − A α ) 6\alpha-A \alpha) 6 α − A α ) ( α ⋅ A α ) B = ( A α \displaystyle (\alpha \cdot A \alpha)B=(A \alpha ( α ⋅ A α ) B = ( A α  ,6 α − A α ) 6 \alpha-A \alpha) 6 α − A α ) ( α ⋅ A α ) ( 06 1 − 1 ) = ( A α \displaystyle (\alpha \cdot A \alpha)\left(\begin{array}{cc}0 6 \\1 -1\end{array}\right)=(A \alpha ( α ⋅ A α ) ( 06 1 − 1  ) = ( A α  ,6 α − A α ) 6 \alpha-A \alpha) 6 α − A α ) 求得B的系数矩阵B = ( 0 6 1 − 1 ) = P − 1 A P \displaystyle B=\left(\begin{array}{cc}0 & 6 \\ 1 & -1\end{array}\right)=P^{-1} A P B = ( 0 1  6 − 1  ) = P − 1 A P 因为A和B相似,所以A和B的特征值一样 求B的特征值 则有 ∣ λ E − B ∣ = ∣ λ − 6 − 1 λ + 1 ∣ = λ 2 + λ − 6 = ( λ − 2 ) ( λ + 3 ) \displaystyle |\lambda \boldsymbol{E}-\boldsymbol{B}|=\left|\begin{array}{cc}\lambda & -6 \\ -1 & \lambda+1\end{array}\right|=\lambda^2+\lambda-6=(\lambda-2)(\lambda+3) ∣ λ E − B ∣ =  λ − 1  − 6 λ + 1   = λ 2 + λ − 6 = ( λ − 2 ) ( λ + 3 )  , 得 B \boldsymbol{B} B   的特征值为 2 , − 3 2,-3 2 , − 3  .   A A A  有两个不同的特征值 所以 A \boldsymbol{A} A   相似于对角矩阵 ( 2 0 0 − 3 ) \displaystyle \left(\begin{array}{cc}2 & 0 \\ 0 & -3\end{array}\right) ( 2 0  0 − 3  )  .  解法2 A P = P = ( α , A α ) ( A α , A 2 α ) = A 2 α + A α − 6 α = 0 ( A α , 6 α − A α ) = ( α , A α ) ( 0 6 1 − 1 ) = P ( 0 6 1 − 1 ) , \displaystyle \boldsymbol{A P}\xlongequal[]{\boldsymbol{P}=(\boldsymbol{\alpha}, \boldsymbol{A} \boldsymbol{\alpha})}\left(\boldsymbol{A} \boldsymbol{\alpha}, \boldsymbol{A}^2 \boldsymbol{\alpha}\right)\xlongequal[]{\boldsymbol{A}^{2} \boldsymbol{\alpha}+\boldsymbol{A} \boldsymbol{\alpha}-6 \boldsymbol{\alpha}=\mathbf{0}}(\boldsymbol{A \alpha}, 6 \boldsymbol{\alpha}-\boldsymbol{A \alpha})=(\boldsymbol{\alpha}, \boldsymbol{A} \boldsymbol{\alpha})\left(\begin{array}{cc}0 & 6 \\1 & -1\end{array}\right)=\boldsymbol{P}\left(\begin{array}{cc}0 & 6 \\1 & -1\end{array}\right), AP P = ( α , A α )  ( A α , A 2 α ) A 2 α + A α − 6 α = 0  ( Aα , 6 α − Aα ) = ( α , A α ) ( 0 1  6 − 1  ) = P ( 0 1  6 − 1  ) , 所以P − 1 A P = ( 0 6 1 − 1 ) , \displaystyle \boldsymbol{P}^{-1} \boldsymbol{A P}=\left(\begin{array}{cc}0 & 6 \\1 & -1\end{array}\right), P − 1 AP = ( 0 1  6 − 1  ) ,  可知矩阵 A \boldsymbol{A} A   与 ( 0 6 1 − 1 ) \displaystyle \left(\begin{array}{cc}0 & 6 \\ 1 & -1\end{array}\right) ( 0 1  6 − 1  )   相似, (22) (本题满分 11 分)  设随机变量 X 1 , X 2 , X 3 X_{1}, X_{2}, X_{3} X 1  , X 2  , X 3    相互独立, 其中 X 1 X_{1} X 1    与 X 2 X_{2} X 2    均服从标准正态分布, X 3 X_{3} X 3    的概率分布为 P { X 3 = 0 } P\left\{X_{3}=0\right\} P { X 3  = 0 } 
= P { X 3 = 1 } = 1 2 ⋅ Y = X 3 X 1 + ( 1 − X 3 ) X 2 =P\left\{X_{3}=1\right\}=\frac{1}{2} \cdot Y=X_{3} X_{1}+\left(1-X_{3}\right) X_{2} = P { X 3  = 1 } = 2 1  ⋅ Y = X 3  X 1  + ( 1 − X 3  ) X 2   .  (I ) 求二维随机变量 ( X 1 , Y ) \left(X_{1}, Y\right) ( X 1  , Y )   的分布函数,结果用标准正态分布函数 Φ ( x ) \Phi(x) Φ ( x )   表示;  (II) 证明随机变量 Y Y Y   服从标准正态分布.(22) 解
全集分解∶一个离散,一个连续 2020年第22题,2019年第22题,2017年第22题,2016年第22题,2014年第22题 全集分解的思想∶A的发生伴随着其他几个事件的发生图示 1 P ( A ) = P ( A B 1 ) + P ( A B 2 ) + P ( A B 3 ) P(A)=P\left(A B_1\right)+P\left(A B_2\right)+P\left(A B_3\right) P ( A ) = P ( A B 1  ) + P ( A B 2  ) + P ( A B 3  )   先要会写二维随机变量( X , Y ) (X,Y) ( X , Y )  的分布函数的定义F ( x , y ) = P { X ≤ x , Y ≤ y } F(x, y)=P\{X\leq x, Y \leq y\} F ( x , y ) = P { X ≤ x , Y ≤ y } 分析题目中的条件 X 1 , X 2 X_1, X_2 X 1  , X 2    均服从标准正态分布∶X 1 , X 2 ∼ N ( 0 , 1 ) X_1, X_2 \sim N(0,1) X 1  , X 2  ∼ N ( 0 , 1 )  ,X 3 X_3 X 3    的概率分布0,1分布为 P { X 3 = 0 } , P { X 3 = 1 } = 1 2 P\left\{X_3=0\right\}\text{,}P\left\{X_3=1\right\}=\frac{1}{2} P { X 3  = 0 } , P { X 3  = 1 } = 2 1  则X 3 ∼ ( 0 1 1 2 1 2 ) \displaystyle X_3 \sim\left(\begin{array}{cc}0 & 1 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right) X 3  ∼ ( 0 2 1   1 2 1   )    把Y给换掉∶= P { X 1 ⩽ x , X 3 X 1 + ( 1 − X 3 ) X 2 ⩽ y ⏟ 全集分解 } =P\{X_1 \leqslant x, \underbrace{X_3 X_1+\left(1-X_3\right) X_2 \leqslant y}_{\text{全集分解}}\} = P { X 1  ⩽ x , 全集分解 X 3  X 1  + ( 1 − X 3  ) X 2  ⩽ y   } 对离散的进行全集分解(也就是全概率公式的应用) 只要这里边有离散的随机变量,就对离散的进行分解 X 3 X_3 X 3   是离散的,对它进行全集分解。= P { X 1 ⩽ x , Y ⩽ y , X 3 = 0 } ⏟ 当 X 3 = 0 时, Y = X 2 + P { X 1 ≤ x , Y ⩽ y , X 3 = 1 } ⏟ 当 X 3 = 1 时, Y = X 1 =\underbrace{P\left\{X_1 \leqslant x, Y \leqslant y, X_3=0\right\}}_{\text{当}X_{3}=0\text{时,}Y=X_{2}}+\underbrace{P\left\{X_1 \leq x\right.,\left.Y \leqslant y,X_3=1\right\}}_{\text{当}X_{3}=1\text{时,}Y=X_{1}} = 当 X 3  = 0 时, Y = X 2  P { X 1  ⩽ x , Y ⩽ y , X 3  = 0 }   + 当 X 3  = 1 时, Y = X 1  P { X 1  ≤ x , Y ⩽ y , X 3  = 1 }   将X 3 X_3 X 3   代入题中所给公式Y = X 3 X 1 + ( 1 − X 3 ) X 2 Y=X_3 X_1+\left(1-X_3\right) X_2 Y = X 3  X 1  + ( 1 − X 3  ) X 2   ,分别得到 当X 3 = 0 X_{3}=0 X 3  = 0  时,Y = X 2 Y=X_{2} Y = X 2   当X 3 = 1 X_{3}=1 X 3  = 1  时,Y = X 1 Y=X_{1} Y = X 1   从而将Y Y Y  换成对应情况的的X X X  ,得= P { X 1 ≤ x , X 2 ≤ y , X 3 = 0 } ⏟ Φ ( x ) ⋅ Φ ( y ) \cdotp 1 2 + P { X 1 ≤ x , X 1 ≤ y , X 3 = 1 } ⏟ Φ ( min  { x , y } ) \cdotp 1 2 =P\underbrace{\left\{X_1 \leq x, X_2 \leq y\text{,}X_3=0\right\}}_{\Phi(x) \cdot \Phi(y) \text{·}\frac12}+\underbrace{\\P\left\{X_1 \leq x, X_1 \leq y, X_3=1\right\}}_{\Phi(\min \{x, y\})\text{·}\frac12} = P Φ ( x ) ⋅ Φ ( y ) \cdotp 2 1  { X 1  ≤ x , X 2  ≤ y , X 3  = 0 }   + Φ ( m i n { x , y }) \cdotp 2 1  P { X 1  ≤ x , X 1  ≤ y , X 3  = 1 }       化简环节 由随机变量 X 1 , X 2 , X 3 X_1, X_2, X_3 X 1  , X 2  , X 3    相互独立,将乘积的概率化为概率的乘积 只有拆开才能继续进行概率的计算 拆第一部分∶P { X 1 ≤ x } \cdotp P { X 2 ⩽ y } . P { X 3 = 0 } P\left\{X_1 \leq x\right\}\text{·} P\left\{X_2 \leqslant y\right\} .P\left\{X_3=0\right\} P { X 1  ≤ x } \cdotp P { X 2  ⩽ y } . P { X 3  = 0 }  拆第二部分∶P { X 1 ⩽ x , X 21 ⩽ y } P\left\{X_1 \leqslant x, X_{21}\leqslant y\right\} P { X 1  ⩽ x , X 21  ⩽ y }  合并为P { X 1 ≤ min  ( x , y ) } P\left\{X_1 \leq \min (x, y)\right\} P { X 1  ≤ min ( x , y ) }  整体写成P { X 1 ≤ min  ( x , y ) } ⋅ P { X 3 = 1 } P\left\{X_1 \leq \min (x, y)\right\} \cdot P\left\{X_3=1\right\} P { X 1  ≤ min ( x , y ) } ⋅ P { X 3  = 1 }   写出对应分布函数,由X 1 , X 2 X_1, X_2 X 1  , X 2    均服从标准正态分布,则 P { X 1 ≤ x } \cdotp P { X 2 ⩽ y } . P { X 3 = 0 } P\left\{X_1 \leq x\right\}\text{·} P\left\{X_2 \leqslant y\right\} .P\left\{X_3=0\right\} P { X 1  ≤ x } \cdotp P { X 2  ⩽ y } . P { X 3  = 0 }  =Φ ( x ) ⋅ Φ ( y ) ⋅ 1 2 \Phi(x) \cdot \Phi(y) \cdot \frac{1}{2} Φ ( x ) ⋅ Φ ( y ) ⋅ 2 1  P { X 1 ≤ min  ( x , y ) } ⋅ P { X 3 = 1 } P\left\{X_1 \leq \min (x, y)\right\} \cdot P\left\{X_3=1\right\} P { X 1  ≤ min ( x , y ) } ⋅ P { X 3  = 1 }  =Φ ( min  { x , y } ) ⋅ 1 2 \Phi(\min \{x, y\}) \cdot \frac{1}{2} Φ ( min { x , y }) ⋅ 2 1    关键∶全概率体现为∶对离散型进行全集分解 II) 证时随机变量 Y Y Y   服从标准正态分布 已知二维的联合分布 F ( x , y ) → 求一维的边缘分布 F Y ( y ) F(x, y) \rightarrow\text{求一维的边缘分布} F_Y(y) F ( x , y ) → 求一维的边缘分布 F Y  ( y ) 令x → + ∞ x\rightarrow+\infty x → + ∞  ,y y y  不动 F Y ( y ) = F ′ ( + ∞ , y ) = 1 2 Φ ( + ∞ ) \cdotp Φ ( y ) + 1 2 Φ ( y ) F_Y(y)=F^{\prime}(+\infty, y)=\frac{1}{2} \Phi(+\infty) \text{·}\Phi(y)+\frac{1}{2} \Phi(y) F Y  ( y ) = F ′ ( + ∞ , y ) = 2 1  Φ ( + ∞ ) \cdotp Φ ( y ) + 2 1  Φ ( y ) 由Φ ( + ∞ ) = 1 \Phi(+\infty)=1 Φ ( + ∞ ) = 1  化简得,1 2 ⋅ Φ ( y ) ⋅ 1 + 1 2 Φ ( y ) = Φ ( y ) \frac{1}{2} \cdot \Phi(y) \cdot 1+\frac{1}{2} \Phi(y)=\Phi(y) 2 1  ⋅ Φ ( y ) ⋅ 1 + 2 1  Φ ( y ) = Φ ( y )   从而证得Y Y Y  服从标准正态分布  有意识的带你如何思考(一道题拿到手的思考方式) 第一步∶是不是我自己把这个分布函数给它写出来啊? 那有同学说,哎呀,我这不敢用这小x小y 就这随便你写个u,v啊都行,没有人管你这个自变量字母,都无所谓哈  下一步∶在我们要求Y ≤ y Y\leq y Y ≤ y  的题目中,是不是Y Y Y  会换成X X X  的函数对吧? 就要用已知推未知,那么这里的Y Y Y  你肯定要自然的想到我换成它的表达式。他表达式给你不就是为了换吗?是不是? 这是这一步,我们为什么能想得到下一步呢?  第三步为什么想得到呢? 因为我看到里面有离散型了,而我们在20年之前做过很多,只要这个里面有离散型,我就对离散的变量进行全集分解 因为有离散,也有连续是吧? X1X2是连续型,那么离散和连续的掺杂在一起,我是不是就要对离散全局分解?所以我很自然的往这一步尝试 但是这一步,它就是一个有点忐忑的尝试,因为确实可能之前没做过这个题, 但是你就打开试嘛,一打开发现诶,很顺,我后面的步骤都带进去了,那么这个尝试就就成功了    我们做题就是不可能都站在上帝视角, 同学们第一步肯定这样做,第二步肯定这样做,不可能都 我是试出来的,当然是要结合过往的经验  就我今天会给你去带这个感觉好吗?就今天讲的比较快,你能体会多少算多少哈,因为咱是空降到一个难点,这个没办法那  (23) (本题满分 11 分)  设某种元件的使用寿命 T T T   的分布函数为
F ( t ) = { 1 − e − ( t θ ) m , t ⩾ 0 , 0 ,  其他,  \displaystyle F(t)= \begin{cases}1-\mathrm{e}^{-\left(\frac{t}{\theta}\right)^{\mathrm{m}}}, & t \geqslant 0, \\ 0, & \text { 其他, }\end{cases} F ( t ) = { 1 − e − ( θ t  ) m , 0 ,  t ⩾ 0 ,   其他 ,     其中 θ , m \theta, m θ , m   为参数且大于零.  ( I ) 求概率 P { T > t } P\{T>t\} P { T > t }   与 P { T > s + t ∣ T > s } P\{T>s+t \mid T>s\} P { T > s + t ∣ T > s }  , 其中 s > 0 , t > 0 s>0, t>0 s > 0 , t > 0  .  (II) 任取 n n n   个这种元件做寿命试验, 测得它们的寿命分别为 t 1 , t 2 , ⋯   , t n t_{1}, t_{2}, \cdots, t_{n} t 1  , t 2  , ⋯ , t n   . 若 m m m   已知, 求 θ \theta θ   的最 大似然估计值 θ ^ \hat{\theta} θ ^  .(23) (1) 由条件知 P { T > t } = 1 − P { T ≤ t } \displaystyle P\{T > t\} = 1 - P\{T \leq t\} P { T > t } = 1 − P { T ≤ t } = 1 − F ( t ) = 1 − [ 1 − e − ( t θ ) m ] = e − ( t θ ) m . \displaystyle = 1 - F(t) =1-\left[1-e^{-\left(\frac{t}{\theta}\right)^m}\right]= e^{-\left(\frac{t}{\theta}\right)^m} . = 1 − F ( t ) = 1 − [ 1 − e − ( θ t  ) m ] = e − ( θ t  ) m . P { T > s + t ∣ T > s } = P { T > s + t , T > s } P { T > s } = 取交集 P { T > s + t } P { T > s } \displaystyle P\{T > s+t \mid T > s\} = \frac{P\{T > s+t, T > s\}}{P\{T > s\}} \xlongequal[]{\text{取交集}}\frac{P\{T > s+t\}}{P\{T > s\}} P { T > s + t ∣ T > s } = P { T > s } P { T > s + t , T > s }  取交集  P { T > s } P { T > s + t }  = e − ( s + t θ ) m e − ( s θ ) m = 指数相减 e ( s θ ) m − ( s + t θ ) m \displaystyle =\frac{e^{-\left(\frac{s+t}{\theta}\right)^m}}{e^{-\left(\frac{s}{\theta}\right)^m}} \xlongequal[]{\text{指数相减}}e^{\left(\frac{s}{\theta}\right)^m-\left(\frac{s+t}{\theta}\right)^m} = e − ( θ s  ) m e − ( θ s + t  ) m  指数相减  e ( θ s  ) m − ( θ s + t  ) m 其中P { T > s + t } = 类比 T > s 的概率 e − ( s + t θ ) m \displaystyle P\{T > s+t\}\xlongequal[]{\text{类比}T\text{>}s\text{的概率}}e^{-\left(\frac{s+t}{\theta}\right)^m} P { T > s + t } 类比 T > s 的概率  e − ( θ s + t  ) m   ( II) 分布函数求导得概率密度 f ( t ; θ ) f(t ; \theta) f ( t ; θ )  .f ( t ; θ ) = F ′ ( t ; θ ) = { − e − ( 1 θ ) m ⋅ ( − m ) ⋅ ( t θ ) m − 1 ⋅ 1 θ , t > 0 , 0 ,  其他  \displaystyle f(t ; \theta)=F^{\prime}(t ; \theta)=\left\{\begin{array}{ll} -\mathrm{e}^{-\left(\frac{1}{\theta}\right)^m} \cdot(-m) \cdot\left(\frac{t}{\theta}\right)^{m-1} \cdot \frac{1}{\theta}, & t>0, \\ 0, & \text { 其他 } \end{array}\right. f ( t ; θ ) = F ′ ( t ; θ ) = { − e − ( θ 1  ) m ⋅ ( − m ) ⋅ ( θ t  ) m − 1 ⋅ θ 1  , 0 ,  t > 0 ,   其他    = 整理 { m t m − 1 θ m e − ( t θ ) m , , t > 0 , 0 ,  其他.  \displaystyle \begin{aligned}\xlongequal[]{\text{整理}} \begin{cases}\frac{m t^{m-1}}{\theta^m} \mathrm{e}^{-\left(\frac{t}{\theta}\right)^m,}, & t>0, \\ 0, & \text { 其他. }\end{cases}\end{aligned} 整理  { θ m m t m − 1  e − ( θ t  ) m , , 0 ,  t > 0 ,   其他 .     连续型:用概率密度连乘构造似然函数L ( θ ) = f ( t 1 ) ⋅ f ( t 2 ) ⋯ ⋅ f ( t n ) \displaystyle L(\theta) = f(t_1) \cdot f(t_2) \cdots \cdot f(t_n) L ( θ ) = f ( t 1  ) ⋅ f ( t 2  ) ⋯ ⋅ f ( t n  ) = m t 1 m − 1 θ m e − ( t 1 θ ) m ⋅ m t 2 m − 1 θ m e − ( t 2 θ ) m ⋯ ⋅ m t n m − 1 θ m e − ( t n θ ) m \displaystyle = \frac{m t_1^{m-1}}{\theta^m} e^{-(\frac{t_1}{\theta})^m} \cdot \frac{m t_2^{m-1}}{\theta^m} e^{-(\frac{t_2}{\theta})^m} \cdots \cdot \frac{m t_n^{m-1}}{\theta^m} e^{-(\frac{t_n}{\theta})^m} = θ m m t 1 m − 1   e − ( θ t 1   ) m ⋅ θ m m t 2 m − 1   e − ( θ t 2   ) m ⋯ ⋅ θ m m t n m − 1   e − ( θ t n   ) m = 合并同类项 m n ⋅ θ − m n ⋅ ( t 1 t 2 ⋯ t n ) m − 1 e − 1 θ m [ ∑ i = 1 n t i m ] \displaystyle \xlongequal[]{\text{合并同类项}}m^n \cdot \theta^{-mn} \cdot (t_1 t_2 \cdots t_n)^{m-1} e^{-\frac{1}{\theta^m} \left[ \sum_{i=1}^{n} t_i^m \right]} 合并同类项  m n ⋅ θ − mn ⋅ ( t 1  t 2  ⋯ t n  ) m − 1 e − θ m 1  [ ∑ i = 1 n  t i m  ]  取对数:为了方便求导,ln  L ( θ ) = n ln  m − m n ln  θ + ( m − 1 ) ln  ( t 1 ⋯ t n ) − 1 θ m ∑ i = 1 n t i m \displaystyle \ln L(\theta) = n \ln m - mn \ln \theta + (m-1) \ln (t_1 \cdots t_n) - \frac{1}{\theta^m} \sum_{i=1}^{n} t_i^m ln L ( θ ) = n ln m − mn ln θ + ( m − 1 ) ln ( t 1  ⋯ t n  ) − θ m 1  i = 1 ∑ n  t i m   对θ \theta θ  求导,求驻点(可能的极值点)d ln  L ( θ ) d θ = − m n θ + m θ m + 1 ∑ i = 1 n t i m = 0 \displaystyle \frac{d \ln L(\theta)}{d\theta} = -\frac{mn}{\theta} + \frac{m}{\theta^{m+1}} \sum_{i=1}^{n} t_i^m = 0 d θ d ln L ( θ )  = − θ mn  + θ m + 1 m  i = 1 ∑ n  t i m  = 0 → 同乘 θ ,移项 θ = 1 n ∑ i = 1 n t i m m \displaystyle \xrightarrow[]{\text{同乘} \theta\text{,移项}} \theta = \sqrt[m]{\frac{1}{n} \sum_{i=1}^{n} t_i^m} 同乘 θ ,移项  θ = m n 1  i = 1 ∑ n  t i m    最终结果:θ ^ = 1 n ∑ i = 1 n t i m m \displaystyle \hat{\theta}=\sqrt[m]{\frac{1}{n} \sum_{i=1}^n t_i^m} θ ^ = m n 1  i = 1 ∑ n  t i m