一、选择题 (本题共 8 小题, 每小题 4 分, 共 32 分. 在每小题给出的四个选项中, 只有一项符合题目要 求,把所选项前的字母填在题后的括号内. )
(1) 极限 lim  x → ∞ [ x 2 ( x − a ) ( x + b ) ] x = ( \displaystyle \lim _{x \rightarrow \infty}\left[\frac{x^{2}}{(x-a)(x+b)}\right]^{x}=(\quad x → ∞ lim  [ ( x − a ) ( x + b ) x 2  ] x = (   )  (A) 1 .  (B) e.  (C) e a − b \mathrm{e}^{a-b} e a − b  .  (D) e b − a \mathrm{e}^{b-a} e b − a  .
(1) 选(C)
lim  x → ∞ [ x 2 ( x − a ) ( x + b ) ] x = e lim  x → ∞ x ln  [ x 2 x 2 + ( b − a ) x − a b ] = e a − b \displaystyle \begin{aligned}\lim _{x \rightarrow \infty}\left[\frac{x^{2}}{(x-a)(x+b)}\right]^{x}= e^{\lim_{x \to \infty} x \ln \left[ \frac{x^2}{x^2 + (b-a)x - ab} \right] }= e^{a-b} \end{aligned} x → ∞ lim  [ ( x − a ) ( x + b ) x 2  ] x = e l i m x → ∞  x l n [ x 2 + ( b − a ) x − ab x 2  ] = e a − b  = ln  ( 1 + a ) → a lim  x → ∞ x ln  [ x 2 x 2 + ( b − a ) x − a b − 1 + 1 ] \displaystyle \begin{aligned} \xlongequal[]{\ln(1+a)\to a}\lim_{x \to \infty} x \ln \left[ \frac{x^2}{x^2 + (b-a)x - ab} - 1 + 1 \right] \end{aligned} l n ( 1 + a ) → a  x → ∞ lim  x ln [ x 2 + ( b − a ) x − ab x 2  − 1 + 1 ]  = 等价无穷小后通分 lim  x → ∞ x x 2 − x 2 − ( b − a ) x + a b x 2 + ( b − a ) x − a b \displaystyle \begin{aligned} \xlongequal[]{\text{等价无穷小后通分}}\lim_{x \to \infty} x \frac{x^2 - x^2 - (b-a)x + ab}{x^2 + (b-a)x - ab} \end{aligned} 等价无穷小后通分  x → ∞ lim  x x 2 + ( b − a ) x − ab x 2 − x 2 − ( b − a ) x + ab   = x 2 − x 2 = 0 只取平方项 lim  x → ∞ − ( b − a ) x 2 + a b x x 2 + ( b − a ) x − a b = lim  x → ∞ − ( b − a ) x 2 x 2 \displaystyle \begin{aligned} \xlongequal[x^2 - x^2 =0]{\text{只取平方项}}\lim_{x \to \infty} \frac{-(b-a)x^2 + abx}{x^2 + (b-a)x - ab}=\lim_{x \to \infty} \frac{-(b-a) x^2}{x^2} \end{aligned} 只取平方项 x 2 − x 2 = 0  x → ∞ lim  x 2 + ( b − a ) x − ab − ( b − a ) x 2 + ab x  = x → ∞ lim  x 2 − ( b − a ) x 2   = − ( b − a ) = a − b \displaystyle \begin{aligned} = -(b-a)=a - b \end{aligned} = − ( b − a ) = a − b  表达式转换:使用 e lim  x → ∞ x ( 表达式 − 1 ) \displaystyle e^{\lim_{x \rightarrow \infty} x(\text{表达式} - 1)} e l i m x → ∞  x ( 表达式 − 1 )   形式。 处理 lim  x → ∞ x [ x 2 ( x − a ) ( x + b ) − 1 ] \displaystyle \lim_{x \rightarrow \infty} x\left[\frac{x^2}{(x-a)(x+b)} - 1\right] x → ∞ lim  x [ ( x − a ) ( x + b ) x 2  − 1 ]  。 通分中括号内的表达式:x 2 ( x − a ) ( x + b ) − 1 = x 2 − ( x − a ) ( x + b ) ( x − a ) ( x + b ) \frac{x^2}{(x-a)(x+b)} - 1 = \frac{x^2 - (x-a)(x+b)}{(x-a)(x+b)} ( x − a ) ( x + b ) x 2  − 1 = ( x − a ) ( x + b ) x 2 − ( x − a ) ( x + b )   。 = 因式展开 : x 2 − ( x 2 + b x − a x − a b ) ( x − a ) ( x + b ) = 消去 x 2 : a b − ( b − a ) x ( x − a ) ( x + b ) \xlongequal[]{\text{因式展开}:}\frac{x^2 - (x^2 + bx - ax - ab)}{(x-a)(x+b)}\xlongequal[]{\text{消去}x^2}:\frac{ab - (b - a)x}{(x-a)(x+b)} 因式展开 :  ( x − a ) ( x + b ) x 2 − ( x 2 + b x − a x − ab )  消去 x 2  : ( x − a ) ( x + b ) ab − ( b − a ) x   。分子乘x x x  ,lim  x → ∞ ( a − b ) x 2 + a b x ( x − a ) ( x + b ) = 抓高去低 a − b \displaystyle \lim_{x \rightarrow \infty} \frac{(a-b)x^2 + abx}{(x-a)(x+b)}\xlongequal[]{\text{抓高去低}}a - b x → ∞ lim  ( x − a ) ( x + b ) ( a − b ) x 2 + ab x  抓高去低  a − b  。  最终极限:lim  x → ∞ [ x 2 ( x − a ) ( x + b ) ] x = e a − b \displaystyle \lim_{x \rightarrow \infty}\left[\frac{x^2}{(x-a)(x+b)}\right]^{x} = e^{a-b} x → ∞ lim  [ ( x − a ) ( x + b ) x 2  ] x = e a − b  。 (2) 设函数 z = z ( x , y ) z=z(x, y) z = z ( x , y )   由方程 F ( y x , z x ) = 0 F\left(\frac{y}{x}, \frac{z}{x}\right)=0 F ( x y  , x z  ) = 0   确定, 其中 F F F   为可微函数, 且 F 2 ′ ≠ 0 F_{2}^{\prime} \neq 0 F 2 ′   = 0  , 则 x ∂ z ∂ x + y ∂ z ∂ y = ( ) x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=(\quad) x ∂ x ∂ z  + y ∂ y ∂ z  = ( )   (A) x x x  .  ( B) z z z  .  (C) − x -x − x   (D) − z -z − z 
(2) 求表达式 x ∂ z ∂ x + y ∂ z ∂ y x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} x ∂ x ∂ z  + y ∂ y ∂ z   。 方程 F ( y x , z x ) = 0 F\left(\frac{y}{x}, \frac{z}{x}\right)=0 F ( x y  , x z  ) = 0   分别对 x , y x\text{,}y x , y  求偏导 对 x x x   求偏导得:− y x 2 F 1 ′ + ( ∂ z ∂ x ⋅ 1 x − z 1 x 2 ) F 2 ′ = 0 → 移项 ∂ z ∂ x = y x F 1 ′ + z x F 2 ′ F 2 ′ , -\frac{y}{x^2} F_1^{\prime} + \left(\frac{\partial z}{\partial x} \cdot \frac{1}{x} - z \frac{1}{x^2}\right) F_2^{\prime} = 0\xrightarrow[]{\text{移项}}\frac{\partial z}{\partial x}=\frac{\frac{y}{x} F_1^{\prime}+\frac{z}{x} F_2^{\prime}}{F_2^{\prime}}, − x 2 y  F 1 ′  + ( ∂ x ∂ z  ⋅ x 1  − z x 2 1  ) F 2 ′  = 0 移项  ∂ x ∂ z  = F 2 ′  x y  F 1 ′  + x z  F 2 ′   ,  对 y y y   求偏导得:1 x F 1 ′ + 1 x ⋅ ∂ z ∂ y F 2 ′ = 0 → 移项 ∂ z ∂ y = − F 1 ′ F 2 ′ \frac{1}{x} F_1^{\prime} + \frac{1}{x} \cdot \frac{\partial z}{\partial y} F_2^{\prime} = 0\xrightarrow[]{\text{移项}}\frac{\partial z}{\partial y}=-\frac{F_1^{\prime}}{F_2^{\prime}} x 1  F 1 ′  + x 1  ⋅ ∂ y ∂ z  F 2 ′  = 0 移项  ∂ y ∂ z  = − F 2 ′  F 1 ′     组合两个偏导数得:( x ∂ z ∂ x + y ∂ z ∂ y ) = y F 1 ′ + z F 2 ′ − y F 1 ′ F 2 ′ = F 2 ′ ≠ 0 z \left(x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}\right) =\frac{y F_1^{\prime}+z F_2^{\prime}-y F_1^{\prime}}{F_2^{\prime}}\xlongequal[]{F_2^{\prime} \neq 0} z ( x ∂ x ∂ z  + y ∂ y ∂ z  ) = F 2 ′  y F 1 ′  + z F 2 ′  − y F 1 ′   F 2 ′   = 0  z   (3) 设 m , n m, n m , n   均是正整数, 则反常积分 ∫ 0 1 ln  2 ( 1 − x ) m x n   d x \displaystyle \int_{0}^{1} \frac{\sqrt[m]{\ln ^{2}(1-x)}}{\sqrt[n]{x}} \mathrm{~d} x ∫ 0 1  n x  m ln 2 ( 1 − x )     d x   的收玫性 ( ) (\quad) ( )   (A) 仅与 m m m   的取值有关.  (B) 仅与 n n n   的取值有关.  (C) 与 m , n m, n m , n   的取值都有关.  (D) 与 m , n m, n m , n   的取值都无关.
(3) 答 应选(D).
三件事  设 m , n m, n m , n   均是正整数,则m ⩾ 1 , n ⩾ 1 m \geqslant 1, n \geqslant 1 m ⩾ 1 , n ⩾ 1  由于被积函数有两个可能的瑕点, x = 0 x=0 x = 0   和 x = 1 x=1 x = 1  ,  故将原积分拆成两部分进行考虑.∫ 0 1 [ ln  ( 1 − x ) ] 2 m x 1 n   d x = ∫ 0 1 2 [ ln  ( 1 − x ) ] 2 m x 1 n   d x + ∫ 1 2 1 [ ln  ( 1 − x ) ] 2 m x 1 n   d x . \displaystyle \int_0^1 \frac{[\ln (1-x)]^{\frac{2}{m}}}{x^{\frac{1}{n}}} \mathrm{~d} x=\int_0^{\frac{1}{2}} \frac{[\ln (1-x)]^{\frac{2}{m}}}{x^{\frac{1}{n}}} \mathrm{~d} x+\int_{\frac{1}{2}}^1 \frac{[\ln (1-x)]^{\frac{2}{m}}}{x^{\frac{1}{n}}} \mathrm{~d} x . ∫ 0 1  x n 1  [ ln ( 1 − x ) ] m 2     d x = ∫ 0 2 1   x n 1  [ ln ( 1 − x ) ] m 2     d x + ∫ 2 1  1  x n 1  [ ln ( 1 − x ) ] m 2     d x . lim  x → 0 + ln  2 m ( 1 − x ) x 1 n = ln  ( 1 − x ) ∼ ( − x ) ( − x ) 2 m x 1 n = 负号扔掉 lim  x → 0 + x 2 m x 1 n = lim  x → 0 + 1 x 1 n − 2 m \displaystyle \lim _{x \rightarrow 0^{+}} \frac{\ln ^{\frac{2}{m}}(1-x)}{x^{\frac{1}{n}}}\xlongequal[]{\ln (1-x) \sim(-x)}\frac{(-x)^{\frac{2}{m}}}{x^{\frac{1}{n}}}\xlongequal[]{\text{负号扔掉}}\lim _{x \rightarrow 0^{+}} \frac{x^{\frac{2}{m}}}{x^{\frac{1}{n}}}=\lim _{x \rightarrow 0^{+}} \frac{1}{x^{\frac{1}{n}-\frac{2}{m}}} x → 0 + lim  x n 1  ln m 2  ( 1 − x )  l n ( 1 − x ) ∼ ( − x )  x n 1  ( − x ) m 2   负号扔掉  x → 0 + lim  x n 1  x m 2   = x → 0 + lim  x n 1  − m 2  1  当 m , n m, n m , n   为正数时, 1 n − 2 m < 1 n ≤ 1 \frac{1}{n}-\frac{2}{m}<\frac{1}{n} \leq 1 n 1  − m 2  < n 1  ≤ 1 m和n只要取正整数 ,上面条件肯定成立∫ 0 1 1 x p d x {  收敛,  p < 1 ,  发散,  p ⩾ 1. \displaystyle \begin{aligned} \int_0^1 \frac{1}{x^p} d x \begin{cases}\text { 收敛, } & p<1, \\\text { 发散, } & p \geqslant 1 .\end{cases}\end{aligned} ∫ 0 1  x p 1  d x {   收敛,     发散,    p < 1 , p ⩾ 1.     x → 1 x \rightarrow 1 x → 1 f ( x ) = [ ln  ( 1 − x ) ] 2 m ( x 1 n ) ∼ [ ln  ( 1 − x ) ] 2 m \displaystyle \begin{aligned}f(x)=\frac{[\ln (1-x)]^{\frac{2}{m}}}{\left(x^{\frac{1}{n}}\right)} \sim[\ln (1-x)]^{\frac{2}{m}}\end{aligned} f ( x ) = ( x n 1  ) [ ln ( 1 − x ) ] m 2   ∼ [ ln ( 1 − x ) ] m 2   = ( − ln  1 1 − x ) 2 m =\left(-\ln \frac{1}{1-x}\right)^{\frac{2}{m}} = ( − ln 1 − x 1  ) m 2  = ( ln  1 1 − x ) 2 m =\left(\ln \frac{1}{1-x}\right)^{\frac{2}{m}} = ( ln 1 − x 1  ) m 2   ,伪无穷不用算,必定收敛比较判敛法 设 lim  x → + ∞ f ( x ) g ( x ) = l \displaystyle \begin{aligned} \lim_{x\rightarrow+\infty}\frac{f(x)}{g(x)}=l \end{aligned} x → + ∞ lim  g ( x ) f ( x )  = l   ,默认x跑向无穷时,f ( x ) f(x) f ( x )  与g ( x ) g(x) g ( x )  跑向无穷小 (1) l \displaystyle \begin{aligned} l \end{aligned} l    为非零常数, 则 ∫ 1 + ∞ f ( x ) d x \displaystyle \begin{aligned} \int_1^{+\infty} f(x) dx \end{aligned} ∫ 1 + ∞  f ( x ) d x    与 ∫ 1 + ∞ g ( x ) d x \displaystyle \begin{aligned} \int_1^{+\infty} g(x) dx \end{aligned} ∫ 1 + ∞  g ( x ) d x    同敛散;(同阶同敛散) (2) l = 0 \displaystyle \begin{aligned} l=0 \end{aligned} l = 0   , ∫ 1 + ∞ g ( x ) d x \displaystyle \begin{aligned} \int_1^{+\infty} g(x) dx \end{aligned} ∫ 1 + ∞  g ( x ) d x    收敛则 ∫ 1 + ∞ f ( x ) d x \displaystyle \begin{aligned} \int_1^{+\infty} f(x) dx \end{aligned} ∫ 1 + ∞  f ( x ) d x    收敛; (3) l = ∞ \displaystyle \begin{aligned} l=\infty \end{aligned} l = ∞   , ∫ 1 + ∞ g ( x ) d x \displaystyle \begin{aligned} \int_1^{+\infty} g(x) dx \end{aligned} ∫ 1 + ∞  g ( x ) d x    发散则 ∫ 1 + ∞ f ( x ) d x \displaystyle \begin{aligned} \int_1^{+\infty} f(x) dx \end{aligned} ∫ 1 + ∞  f ( x ) d x    发散.  设 lim  x → 0 f ( x ) g ( x ) = l \displaystyle \begin{aligned} \lim_{x\rightarrow 0}\frac{f(x)}{g(x)}=l \end{aligned} x → 0 lim  g ( x ) f ( x )  = l   , 0 \displaystyle \begin{aligned} 0 \end{aligned} 0    为瑕点,默认x跑向0时,f ( x ) f(x) f ( x )  与g ( x ) g(x) g ( x )  跑向无穷小 (1) l \displaystyle \begin{aligned} l \end{aligned} l    为非零常数, 则 ∫ 0 1 f ( x ) d x \displaystyle \begin{aligned} \int_0^1 f(x) dx \end{aligned} ∫ 0 1  f ( x ) d x    与 ∫ 0 1 g ( x ) d x \displaystyle \begin{aligned} \int_0^1 g(x) dx \end{aligned} ∫ 0 1  g ( x ) d x    同敛散; (2) l = 0 \displaystyle \begin{aligned} l=0 \end{aligned} l = 0   , ∫ 0 1 g ( x ) d x \displaystyle \begin{aligned} \int_0^1 g(x) dx \end{aligned} ∫ 0 1  g ( x ) d x    收敛则 ∫ 0 1 f ( x ) d x \displaystyle \begin{aligned} \int_0^1 f(x) dx \end{aligned} ∫ 0 1  f ( x ) d x    收敛; (3) l = ∞ \displaystyle \begin{aligned} l=\infty \end{aligned} l = ∞   , ∫ 0 1 g ( x ) d x \displaystyle \begin{aligned} \int_0^1 g(x) dx \end{aligned} ∫ 0 1  g ( x ) d x    发散则 ∫ 0 1 f ( x ) d x \displaystyle \begin{aligned} \int_0^1 f(x) dx \end{aligned} ∫ 0 1  f ( x ) d x    发散.   二、 P积分 ∫ 1 + ∞ 1 x p d x {  收敛,  p > 1 ,  发散,  p ⩽ 1. \displaystyle \begin{aligned}& \int_1^{+\infty} \frac{1}{x^p} d x \begin{cases}\text { 收敛, } & p>1, \\\text { 发散, } & p \leqslant 1 .\end{cases} \end{aligned}  ∫ 1 + ∞  x p 1  d x {   收敛,     发散,    p > 1 , p ⩽ 1.   ∫ 0 1 1 x p d x {  收敛,  p < 1 ,  发散,  p ⩾ 1. \displaystyle \begin{aligned} \int_0^1 \frac{1}{x^p} d x \begin{cases}\text { 收敛, } & p<1, \\\text { 发散, } & p \geqslant 1 .\end{cases}\end{aligned} ∫ 0 1  x p 1  d x {   收敛,     发散,    p < 1 , p ⩾ 1.    三、 ∫ 0 1 ln  n x d x \displaystyle \begin{aligned}\int_0^1 \ln ^n x d x\end{aligned} ∫ 0 1  ln n x d x   的敛散性 ( n > 0 ) (n>0) ( n > 0 )  :x → 0 + , ∣ ln  n x ∣ ≪ 1 x m x \rightarrow 0^{+},\left|\ln ^n x\right| \ll \frac{1}{x^m} x → 0 + , ∣ ln n x ∣ ≪ x m 1  lim  x → 0 + ln  x 1 / x = 洛必达 lim  x → 0 + 1 / x − 1 / x 2 = 整理 lim  x → 0 + ( − x ) = 0 \displaystyle \begin{aligned}\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x}\xlongequal[]{\text{洛必达}}\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^2}\xlongequal[]{\text{整理}}\lim _{x \rightarrow 0^{+}}(-x)=0\end{aligned} x → 0 + lim  1/ x ln x  洛必达  x → 0 + lim  − 1/ x 2 1/ x  整理  x → 0 + lim  ( − x ) = 0  lim  x → 0 + ln  2 x 1 / x = 洛必达 lim  x → 0 + 2 ln  x ⋅ 1 x − 1 / x 2 = 整理 lim  x → 0 + 2 ln  x − 1 / x \displaystyle \begin{aligned}\lim _{x \rightarrow 0^{+}} \frac{\ln ^2 x}{1 / x}\xlongequal[]{\text{洛必达}}\lim _{x \rightarrow 0^{+}} \frac{2 \ln x \cdot \frac{1}{x}}{-1 / x^2}\xlongequal[]{\text{整理}}\lim _{x \rightarrow 0^{+}} \frac{2 \ln x}{-1 / x}\end{aligned} x → 0 + lim  1/ x ln 2 x  洛必达  x → 0 + lim  − 1/ x 2 2 ln x ⋅ x 1   整理  x → 0 + lim  − 1/ x 2 ln x   lim  x → 0 + ln  x 1 / x 2 = 洛必达 lim  x → 0 + 1 / x − 2 x − 3 = lim  x → 0 + x 2 − 2 = 0 \displaystyle \lim _{x \rightarrow 0^{+}} \frac{\operatorname{ln} x}{1 / x^2}\xlongequal[]{\text{洛必达}}\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-2 x^{-3}}=\lim _{x \rightarrow 0^{+}} \frac{x^2}{-2}=0 x → 0 + lim  1/ x 2 ln x  洛必达  x → 0 + lim  − 2 x − 3 1/ x  = x → 0 + lim  − 2 x 2  = 0  (4) lim  n → ∞ ∑ i = 1 n ∑ j = 1 n n ( n + i ) ( n 2 + j 2 ) = ( \displaystyle \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)\left(n^{2}+j^{2}\right)}=(\quad n → ∞ lim  i = 1 ∑ n  j = 1 ∑ n  ( n + i ) ( n 2 + j 2 ) n  = (   )  (A) ∫ 0 1   d x ∫ 0 x 1 ( 1 + x ) ( 1 + y 2 ) d y \displaystyle \int_{0}^{1} \mathrm{~d} x \int_{0}^{x} \frac{1}{(1+x)\left(1+y^{2}\right)} \mathrm{d} y ∫ 0 1    d x ∫ 0 x  ( 1 + x ) ( 1 + y 2 ) 1  d y  .  (B) ∫ 0 1   d x ∫ 0 x 1 ( 1 + x ) ( 1 + y ) d y \displaystyle \int_{0}^{1} \mathrm{~d} x \int_{0}^{x} \frac{1}{(1+x)(1+y)} \mathrm{d} y ∫ 0 1    d x ∫ 0 x  ( 1 + x ) ( 1 + y ) 1  d y  .  (C) ∫ 0 1   d x ∫ 0 1 1 ( 1 + x ) ( 1 + y ) d y \displaystyle \int_{0}^{1} \mathrm{~d} x \int_{0}^{1} \frac{1}{(1+x)(1+y)} \mathrm{d} y ∫ 0 1    d x ∫ 0 1  ( 1 + x ) ( 1 + y ) 1  d y  .  (D) ∫ 0 1   d x ∫ 0 1 1 ( 1 + x ) ( 1 + y 2 ) d y \displaystyle \int_{0}^{1} \mathrm{~d} x \int_{0}^{1} \frac{1}{(1+x)\left(1+y^{2}\right)} \mathrm{d} y ∫ 0 1    d x ∫ 0 1  ( 1 + x ) ( 1 + y 2 ) 1  d y  .(4) 答 应选(D).
原式 =lim  n → ∞ ∑ i = 1 n ∑ j = 1 n n 3 ( n + i ) ( n 2 + j 2 ) 1 n 2 \displaystyle \begin{aligned} \lim _{n \rightarrow \infty} \sum_{i=1}^n \sum_{j=1}^n \frac{n^3}{(n+i)\left(n^2+j^2\right)} \frac{1}{n^2} \end{aligned} n → ∞ lim  i = 1 ∑ n  j = 1 ∑ n  ( n + i ) ( n 2 + j 2 ) n 3  n 2 1   = 提取 1 n 2 lim  n → ∞ ∑ i = 1 n ∑ j = 1 n 1 ( 1 + i n ) ( 1 + ( j n ) 2 ) ⋅ 1 n 2 \displaystyle \begin{aligned} \xlongequal[]{\text{提取}\frac{1}{n^2} }\lim _{n \rightarrow \infty} \sum_{i=1}^n \sum_{j=1}^n \frac{1}{\left(1+\frac{i}{n}\right)\left(1+\left(\frac{j}{n}\right)^2\right)} \cdot \frac{1}{n^2} \end{aligned} 提取 n 2 1   n → ∞ lim  i = 1 ∑ n  j = 1 ∑ n  ( 1 + n i  ) ( 1 + ( n j  ) 2 ) 1  ⋅ n 2 1   = i n = x , j n = y ∫ 0 1 d x ∫ 0 1 1 ( 1 + x ) ( 1 + y 2 ) d y \displaystyle \begin{aligned}\xlongequal[]{\frac{i}{n}=x, \frac{j}{n}=y}\int_0^1 d x \int_0^1 \frac{1}{(1+x)\left(1+y^2\right)} d y\end{aligned} n i  = x , n j  = y  ∫ 0 1  d x ∫ 0 1  ( 1 + x ) ( 1 + y 2 ) 1  d y   (5) 设 A \boldsymbol{A} A   为 m × n m \times n m × n   矩阵, B \boldsymbol{B} B   为 n × m n \times m n × m   矩阵, E \boldsymbol{E} E   为 m m m   阶单位矩阵,若 A B = E \boldsymbol{A} \boldsymbol{B}=\boldsymbol{E} A B = E  , 则 ( ) (\quad) ( )  (A) 秩 r ( A ) = m r(\boldsymbol{A})=m r ( A ) = m  , 秩 r ( B ) = m r(\boldsymbol{B})=m r ( B ) = m  .  (B) 秩 r ( A ) = m r(\boldsymbol{A})=m r ( A ) = m  , 秩 r ( B ) = n r(\boldsymbol{B})=n r ( B ) = n  .  (C) 秩 r ( A ) = n r(\boldsymbol{A})=n r ( A ) = n  , 秩 r ( B ) = m r(\boldsymbol{B})=m r ( B ) = m  .  (D) 秩 r ( A ) = n r(\boldsymbol{A})=n r ( A ) = n  , 秩 r ( B ) = n r(\boldsymbol{B})=n r ( B ) = n  .
(5) 答 应选 (A).  解 由已知可得 r ( A ) ⩽ min  { m , n } ⩽ m , r ( B ) ⩽ min  { m , n } ⩽ m , m = r ( E ) = r ( A B ) ⩽ min  { r ( A ) , r ( B ) } r(\boldsymbol{A}) \leqslant \min \{m, n\} \leqslant m, r(\boldsymbol{B}) \leqslant \min \{m, n\} \leqslant m, m=r(\boldsymbol{E})=r(\boldsymbol{A B}) \leqslant \min \{r(\boldsymbol{A}), r(\boldsymbol{B})\} r ( A ) ⩽ min { m , n } ⩽ m , r ( B ) ⩽ min { m , n } ⩽ m , m = r ( E ) = r ( AB ) ⩽ min { r ( A ) , r ( B )}  , 即有 r ( A ) ⩾ m r(\boldsymbol{A}) \geqslant m r ( A ) ⩾ m   及 r ( B ) ⩾ m r(\boldsymbol{B}) \geqslant m r ( B ) ⩾ m  . 所以 r ( A ) = r ( B ) = m r(\boldsymbol{A})=r(\boldsymbol{B})=m r ( A ) = r ( B ) = m  , 应选 ( A ) (\mathrm{A}) ( A )  .
(6) 设 A \boldsymbol{A} A   为 4 阶实对称矩阵, 且 A 2 + A = O \boldsymbol{A}^{2}+\boldsymbol{A}=\boldsymbol{O} A 2 + A = O  . 若 A \boldsymbol{A} A   的秩为 3 , 则 A \boldsymbol{A} A   相似于 ()  (A) ( 1 1 1 0 ) \displaystyle \left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 0\end{array}\right)  1  1  1  0    .  (B) ( 1 1 − 1 0 ) \displaystyle \left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & -1 & \\ & & & 0\end{array}\right)  1  1  − 1  0    .  (C) ( 1 − 1 − 1 0 ) \displaystyle \left(\begin{array}{llll}1 & & & \\ & -1 & & \\ & & -1 & \\ & & & 0\end{array}\right)  1  − 1  − 1  0    .  (D) ( − 1 − 1 − 1 0 ) \displaystyle \left(\begin{array}{llll}-1 & & & \\ & -1 & & \\ & & -1 & \\ & & & 0\end{array}\right)  − 1  − 1  − 1  0    .
(6) 答 应选(D).  解 因 A \boldsymbol{A} A   是秩为 3 的实对称矩阵, 所以 A \boldsymbol{A} A   必相似于秩为 3 的对角矩阵. 设 λ \lambda λ   为 A \boldsymbol{A} A   的特征值, 由 A 2 + A = O \boldsymbol{A}^2+\boldsymbol{A}=\boldsymbol{O} A 2 + A = O   可得 λ 2 + λ = 0 \lambda^2+\lambda=0 λ 2 + λ = 0  , 即 λ = 0 \lambda=0 λ = 0   或 -1 . 由此可知只有选项 (D) 是正确的.  注 题目中“实对称”这个条件是可以删掉的, 不影响答案, 但是这样题目难度就加大了, 因为此时判 断 A ∼ Λ \boldsymbol{A} \sim \boldsymbol{\Lambda} A ∼ Λ   就不那么容易了. 读者可以利用“ A \boldsymbol{A} A   有 n n n   个线性无关的特征向量”来完成 A ∼ Λ \boldsymbol{A} \sim \boldsymbol{\Lambda} A ∼ Λ   这一步.
(7) 设随机变量 X X X   的分布函数 F ( x ) = { 0 , x < 0 , 1 2 , 0 ⩽ x < 1 , 1 − e − x , x ⩾ 1 , \displaystyle F(x)=\left\{\begin{array}{ll}0, & x<0, \\ \frac{1}{2}, & 0 \leqslant x<1, \\ 1-\mathrm{e}^{-x}, & x \geqslant 1,\end{array}\right. F ( x ) = ⎩ ⎨ ⎧  0 , 2 1  , 1 − e − x ,  x < 0 , 0 ⩽ x < 1 , x ⩾ 1 ,    则 P { X = 1 } = ( ) P\{X=1\}=(\quad) P { X = 1 } = ( )   ( A) 0 .  ( B) 1 2 \frac{1}{2} 2 1   .  (C) 1 2 − e − 1 \frac{1}{2}-\mathrm{e}^{-1} 2 1  − e − 1  .  (D) 1 − e − 1 1-\mathrm{e}^{-1} 1 − e − 1  .
(7) 定义随机变量 X X X   的分布函数 F ( x ) F(x) F ( x )  : F ( x ) = { 0 , x < 0 , 1 2 , 0 ⩽ x < 1 , 1 − e − x , x ⩾ 1 , \displaystyle F(x) = \left\{\begin{array}{ll}0, & x < 0, \\\frac{1}{2}, & 0 \leqslant x < 1, \\1 - \mathrm{e}^{-x}, & x \geqslant 1,\end{array}\right. F ( x ) = ⎩ ⎨ ⎧  0 , 2 1  , 1 − e − x ,  x < 0 , 0 ⩽ x < 1 , x ⩾ 1 ,   计算 P { X = 1 } P\{X=1\} P { X = 1 }  : 根据分布函数计算公式:P { X = x } = F ( x ) − F ( x − ) P\{X=x\} = F(x) - F\left(x^{-}\right) P { X = x } = F ( x ) − F ( x − ) 对 x = 1 x = 1 x = 1   进行计算: F ( 1 ) = 1 − e − 1 F(1) = 1 - \mathrm{e}^{-1} F ( 1 ) = 1 − e − 1 F ( 1 − ) = 1 2 F\left(1^{-}\right) = \frac{1}{2} F ( 1 − ) = 2 1   (即 x = 1 x = 1 x = 1   之前的分布函数值) 计算概率:P { X = 1 } = 定义 F ( 1 ) − F ( 1 − ) P\{X=1\} \xlongequal[]{\text{定义}} F(1) - F\left(1^{-}\right) P { X = 1 } 定义  F ( 1 ) − F ( 1 − ) = 具体值 ( 1 − e − 1 ) − 1 2 = 1 2 − e − 1 \xlongequal[]{\text{具体值}} (1 - \mathrm{e}^{-1}) - \frac{1}{2}= \frac{1}{2} - \mathrm{e}^{-1} 具体值  ( 1 − e − 1 ) − 2 1  = 2 1  − e − 1   答 应选(C).   (8) 设 f 1 ( x ) f_{1}(x) f 1  ( x )   为标准正态分布的概率密度, f 2 ( x ) f_{2}(x) f 2  ( x )   为 [ − 1 , 3 ] [-1,3] [ − 1 , 3 ]   上均匀分布的概率密度, 若
f ( x ) = { a f 1 ( x ) , x ⩽ 0 , b f 2 ( x ) , x > 0 ( a > 0 , b > 0 ) \displaystyle f(x)=\left\{\begin{array}{ll}a f_{1}(x), & x \leqslant 0, \\b f_{2}(x), & x>0\end{array}(a>0, b>0)\right. f ( x ) = { a f 1  ( x ) , b f 2  ( x ) ,  x ⩽ 0 , x > 0  ( a > 0 , b > 0 )   为概率密度, 则 a , b a, b a , b   应满足 ( )  (A) 2 a + 3 b = 4 2 a+3 b=4 2 a + 3 b = 4  .  (B) 3 a + 2 b = 4 3 a+2 b=4 3 a + 2 b = 4  .  (C) a + b = 1 a+b=1 a + b = 1  .  (D) a + b = 2 a+b=2 a + b = 2  .(8) 题中出现参数,由规范性求参数1 = ∫ − ∞ + ∞ f ( x )   d x \displaystyle 1 = \int_{-\infty}^{+\infty} f(x) \, \mathrm{d} x 1 = ∫ − ∞ + ∞  f ( x ) d x = 按照 f ( x ) 区间拆开 ∫ − ∞ 0 a f 1 ( x )   d x + ∫ 0 + ∞ b f 2 ( x )   d x \displaystyle \xlongequal[]{\text{按照} f(x) \text{区间拆开}} \int_{-\infty}^0 a f_1(x) \, \mathrm{d} x + \int_0^{+\infty} b f_2(x) \, \mathrm{d} x 按照 f ( x ) 区间拆开  ∫ − ∞ 0  a f 1  ( x ) d x + ∫ 0 + ∞  b f 2  ( x ) d x  ,之后,在何处算概率,在何处求积分 → ∫ − ∞ 0 f 1 ( x )   d x = 1 2 计算第一部分积分 ∫ − ∞ 0 a f 1 ( x )   d x = 1 2 a \displaystyle \xrightarrow[\int_{-\infty}^0 f_1(x) \, \mathrm{d} x = \frac{1}{2}]{\text{计算第一部分积分}} \int_{-\infty}^0 a f_1(x) \, \mathrm{d} x = \frac{1}{2} a 计算第一部分积分 ∫ − ∞ 0  f 1  ( x ) d x = 2 1   ∫ − ∞ 0  a f 1  ( x ) d x = 2 1  a f 1 ( x ) f_1(x) \text{} f 1  ( x )  是标准正态分布,服从N ( 0 , 1 ) N(0\text{,}1) N ( 0 , 1 ) → 计算第二部分积分 ∫ 0 + ∞ b f 2 ( x )   d x = 在 ( 0 , 3 ) 取值 ∫ 0 3 b f 2 ( x )   d x \displaystyle \xrightarrow[]{\text{计算第二部分积分}} \int_0^{+\infty} b f_2(x) \, \mathrm{d} x \xlongequal[]{\text{在}(0,3)\text{取值}}\int_0^3 b f_2(x) \, \mathrm{d} x 计算第二部分积分  ∫ 0 + ∞  b f 2  ( x ) d x 在 ( 0 , 3 ) 取值  ∫ 0 3  b f 2  ( x ) d x f 2 ( x ) 是 [ − 1 , 3 ] f_2(x) \text{是} [-1,3] \text{} f 2  ( x ) 是 [ − 1 , 3 ]  上的均匀分布 ∫ 0 3 f 2 ( x )   d x = ∫ 0 3 b 4 ⋅ 1 d x = 3 4 → 计算积分 b ∫ 0 3 f 2 ( x )   d x = 3 4 b \displaystyle \int_0^3 f_2(x) \, \mathrm{d} x = \int_0^3 \frac{b}{4} \cdot 1 d x=\frac{3}{4}\xrightarrow[]{\text{计算积分}} b \int_0^3 f_2(x) \, \mathrm{d} x = \frac{3}{4} b ∫ 0 3  f 2  ( x ) d x = ∫ 0 3  4 b  ⋅ 1 d x = 4 3  计算积分  b ∫ 0 3  f 2  ( x ) d x = 4 3  b = 将两部分结合 1 2 a + 3 4 b = 1 → 同乘4 2 a + 3 b = 4 \xlongequal[]{\text{将两部分结合}} \frac{1}{2} a + \frac{3}{4} b=1\xrightarrow[]{\text{同乘4}} 2a + 3b = 4 将两部分结合  2 1  a + 4 3  b = 1 同乘 4  2 a + 3 b = 4   答 应选 (A). 二、填空题 (本题共 6 小题,每小题 4 分,共 24 分, 把答案填在题中横线上. )
(9) 设 { x = e − t , y = ∫ 0 t ln  ( 1 + u 2 ) d u ,  则  d 2 y   d x 2 ∣ t = 0 = \displaystyle \left\{\begin{array}{l}x=\mathrm{e}^{-t}, \\ y=\int_{0}^{t} \ln \left(1+u^{2}\right) \mathrm{d} u, \text { 则 }\left.\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right|_{t=0}=\end{array}\right. { x = e − t , y = ∫ 0 t  ln ( 1 + u 2 ) d u ,   则     d x 2 d 2 y   t = 0  =  
(9) 答 应填 0 .
计算d y d x = d y d t ⋅ d t d x \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{\mathrm{d} y}{\mathrm{d} t} \cdot \frac{\mathrm{d} t}{\mathrm{d} x} d x d y  = d t d y  ⋅ d x d t  计算 d y d t \frac{\mathrm{d} y}{\mathrm{d} t} d t d y  由 y = ∫ 0 t ln  ( 1 + u 2 ) d u \displaystyle y = \int_{0}^{t} \ln(1 + u^2) \mathrm{d} u y = ∫ 0 t  ln ( 1 + u 2 ) d u   得 d y d t = ln  ( 1 + t 2 ) \frac{\mathrm{d} y}{\mathrm{d} t} = \ln(1 + t^2) d t d y  = ln ( 1 + t 2 )   计算 d t d x \frac{\mathrm{d} t}{\mathrm{d} x} d x d t  由 x = e − t x = \mathrm{e}^{-t} x = e − t   得 d t d x = − e t \frac{\mathrm{d} t}{\mathrm{d} x} = -\mathrm{e}^t d x d t  = − e t   得出 d y d x = ln  ( 1 + t 2 ) − e − t \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{\ln(1 + t^2)}{-\mathrm{e}^{-t}} d x d y  = − e − t l n ( 1 + t 2 )   - 计算 d 2 y d x 2 \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} d x 2 d 2 y    使用链式法则 d 2 y d x 2 = d d t ( d y d x ) ⋅ d t d x \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{d} y}{\mathrm{d} x}\right) \cdot \frac{\mathrm{d} t}{\mathrm{d} x} d x 2 d 2 y  = d t d  ( d x d y  ) ⋅ d x d t  计算 d d t ( d y d x ) \frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{d} y}{\mathrm{d} x}\right) d t d  ( d x d y  ) 由前面得出的 d y d x \frac{\mathrm{d} y}{\mathrm{d} x} d x d y    式子,得 d d t ( d y d x ) = e t [ 2 t 1 + t 2 + ln  ( 1 + t 2 ) ] \frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{d} y}{\mathrm{d} x}\right) = \mathrm{e}^{t}\left[\frac{2t}{1 + t^2} + \ln(1 + t^2)\right] d t d  ( d x d y  ) = e t [ 1 + t 2 2 t  + ln ( 1 + t 2 ) ]   使用 d t d x = − e t \frac{\mathrm{d} t}{\mathrm{d} x} = -\mathrm{e}^t d x d t  = − e t   得出 d 2 y d x 2 = e 2 t [ 2 t 1 + t 2 + ln  ( 1 + t 2 ) ] \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \mathrm{e}^{2t}\left[\frac{2t}{1 + t^2} + \ln(1 + t^2)\right] d x 2 d 2 y  = e 2 t [ 1 + t 2 2 t  + ln ( 1 + t 2 ) ]  - 计算 d 2 y d x 2 ∣ t = 0 \left.\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}\right|_{t=0} d x 2 d 2 y   t = 0    将 t = 0 t = 0 t = 0   代入 d 2 y d x 2 \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} d x 2 d 2 y  得出 d 2 y d x 2 ∣ t = 0 = 0 \left.\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}\right|_{t=0} = 0 d x 2 d 2 y   t = 0  = 0   (10) ∫ 0 π 2 x cos  x   d x = \displaystyle \int_{0}^{\pi^{2}} \sqrt{x} \cos \sqrt{x} \mathrm{~d} x= ∫ 0 π 2  x  cos x    d x = (10) 问题: 求定积分 ∫ 0 π 2 x cos  x   d x \displaystyle \int_{0}^{\pi^{2}} \sqrt{x} \cos \sqrt{x} \, \mathrm{d} x ∫ 0 π 2  x  cos x  d x 第一步:看到一次根号,直接换元根号 换元有三换: 设置换元: 令 t = x t = \sqrt{x} t = x   ,则 x = t 2 x = t^2 x = t 2  计算微分: d x = 2 t   d t \mathrm{d}x = 2t \, \mathrm{d}t d x = 2 t d t  调整积分限: 当 x = 0 x = 0 x = 0  ,t = 0 t = 0 t = 0  ;当 x = π 2 x = \pi^2 x = π 2  ,t = π t = \pi t = π   换元后的积分: ∫ 0 π t cos  t ⋅ 2 t   d t = 2 ∫ 0 π t 2 cos  t   d t \displaystyle \int_{0}^{\pi} t \cos t \cdot 2t \, \mathrm{d} t = 2 \int_{0}^{\pi} t^2 \cos t \, \mathrm{d} t ∫ 0 π  t cos t ⋅ 2 t d t = 2 ∫ 0 π  t 2 cos t d t   第二步:分部积分法 准备∫ u   d v = u v − ∫ v   d u \displaystyle \int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u ∫ u d v = uv − ∫ v d u 选择 u u u   和 d v \mathrm{d}v d v  : 令 u = t 2 u = t^2 u = t 2  ,d v =   d ( sin  t ) \mathrm{d}v = \, \mathrm{d}(\sin t) d v = d ( sin t )  计算 d u \mathrm{d}u d u   和 v v v  : d u = 2 t   d t \mathrm{d}u = 2t \, \mathrm{d}t d u = 2 t d t  ,v = sin  t v = \sin t v = sin t   第一次分部积分: 2 ∫ 0 π t 2 cos  t   d t = 2 t 2 sin  t ∣ 0 π − 4 ∫ 0 π t sin  t   d t \displaystyle 2 \int_{0}^{\pi} t^2 \cos t \, \mathrm{d} t = \left.2 t^2 \sin t\right|_0^{\pi} - 4 \int_{0}^{\pi} t \sin t \, \mathrm{d} t 2 ∫ 0 π  t 2 cos t d t = 2 t 2 sin t  0 π  − 4 ∫ 0 π  t sin t d t 计算第一部分:2 t 2 sin  t ∣ 0 π = 0 − 0 = 0 2 t^2 \sin t|_0^{\pi} =0-0=0 2 t 2 sin t ∣ 0 π  = 0 − 0 = 0    接下来两种方法(分部积分,常用结论) 方法1:对第二部分再次分部积分: − ∫ 0 π t   d ( cos  t ) = − [ t cos  t ∣ 0 π − ∫ 0 π cos  t   d t ] \displaystyle -\int_{0}^{\pi} t \, \mathrm{d}(\cos t) = -[\left.t \cos t\right|_0^{\pi} - \int_{0}^{\pi} \cos t \, \mathrm{d} t] − ∫ 0 π  t d ( cos t ) = − [ t cos t ∣ 0 π  − ∫ 0 π  cos t d t ] 计算: − [ − π − sin  t ∣ 0 π ] = π -[-\pi - \left.\sin t\right|_0^{\pi}] = \pi − [ − π − sin t ∣ 0 π  ] = π  将第二部分带回得:− 4 π -4 \pi − 4 π   方法2:对第二部分用结论:∫ 0 π x f ( sin  x ) d x = 提出 x 变成 π 2 π 2 ∫ 0 π f ( sin  x ) d x = π 2 ⋅ 2 ∫ 0 π 2 f ( sin  x ) d x \displaystyle \int_0^\pi x f(\sin x){d x}\xlongequal[]{\text{提出}x\text{变成}\frac{\pi}{2}}\frac{\pi}{2} \int_0^{\pi} f(\sin x) d x=\frac{\pi}{2} \cdot 2 \int_0^{\frac{\pi}{2}} f(\sin x) d x ∫ 0 π  x f ( sin x ) d x 提出 x 变成 2 π   2 π  ∫ 0 π  f ( sin x ) d x = 2 π  ⋅ 2 ∫ 0 2 π   f ( sin x ) d x − 4 ∫ 0 π t sin  t d t = − 4 ⋅ π 2 ∫ 0 π sin  t d t = ∫ 0 π 2 sin  t d t = 1 − 2 π ⋅ 2 = − 4 π \displaystyle -4 \int_0^\pi t \sin t d t=-4 \cdot \frac{\pi}{2} \int_0^\pi \sin t d t\xlongequal[]{\int_0^{\frac{\pi}{2}} \sin t d t=1}-2 \pi \cdot 2=-4 \pi − 4 ∫ 0 π  t sin t d t = − 4 ⋅ 2 π  ∫ 0 π  sin t d t ∫ 0 2 π   s i n t d t = 1  − 2 π ⋅ 2 = − 4 π    (11) 已知曲线 L L L   的方程为 y = 1 − ∣ x ∣ ( x ∈ [ − 1 , 1 ] ) y=1-|x|(x \in[-1,1]) y = 1 − ∣ x ∣ ( x ∈ [ − 1 , 1 ])  , 起点是 ( − 1 , 0 ) (-1,0) ( − 1 , 0 )  , 终点为 ( 1 , 0 ) (1,0) ( 1 , 0 )  , 则曲线积分 ∫ L x y   d x + x 2   d y = \displaystyle \int_{L} x y \mathrm{~d} x+x^{2} \mathrm{~d} y= ∫ L  x y   d x + x 2   d y = 
(11) 答 应填 0 .
∫ L x y   d x + x 2   d y = \displaystyle \begin{aligned} & \int_L x y \mathrm{~d} x+x^2 \mathrm{~d} y= \end{aligned}  ∫ L  x y   d x + x 2   d y =  = 照抄 ∫ L + L ′ x y   d x + x 2   d y − ∫ L ′ x y   d x + x 2   d y \displaystyle \begin{aligned}\xlongequal[]{\text{照抄}}\int_{L+L^{\prime}} x y \mathrm{~d} x+x^2 \mathrm{~d} y-\int_{L^{\prime}} x y \mathrm{~d} x+x^2 \mathrm{~d} y\end{aligned} 照抄  ∫ L + L ′  x y   d x + x 2   d y − ∫ L ′  x y   d x + x 2   d y  ∮ L + L ′ x y d x + x 2 d y ⏟ P = x y Q = x 2 = 逆时针,加负号 ∂ Q ∂ z − ∂ P ∂ y = − ∬ D ( 2 x − x ) d x d y \displaystyle \begin{aligned}\underbrace{\oint_{L+L'} x y d x+x^2 d y}_{P=x y \quad Q=x^2}\xlongequal[\text{逆时针,加负号}]{\frac{\partial Q}{\partial z}-\frac{\partial P}{\partial y}=}-\iint_D(2 x-x) d x d y\end{aligned} P = x y Q = x 2 ∮ L + L ′  x y d x + x 2 d y   ∂ z ∂ Q  − ∂ y ∂ P  = 逆时针,加负号  − ∬ D  ( 2 x − x ) d x d y  = − ∬ p x d x d y =-\iint_p x d x d y = − ∬ p  x d x d y = x 是奇函数 区域关于 y 对称 0 \displaystyle \begin{aligned} \xlongequal[x\text{是奇函数}]{\text{区域关于}y\text{对称}}0 \end{aligned} 区域关于 y 对称 x 是奇函数  0  ∫ L ′ x y   d x + x 2   d y = x y = 0 0 + 0 = 0 \displaystyle \begin{aligned}\int_{L^{\prime}} x y \mathrm{~d} x+x^2 \mathrm{~d} y\xlongequal[]{xy=0}0+0=0\end{aligned} ∫ L ′  x y   d x + x 2   d y x y = 0  0 + 0 = 0  ∫ L = 0 − 0 = 0 \displaystyle \begin{aligned}\int_L=0-0=0\end{aligned} ∫ L  = 0 − 0 = 0  (12) 设 Ω = { ( x , y , z ) ∣ x 2 + y 2 ⩽ z ⩽ 1 } \Omega=\left\{(x, y, z) \mid x^{2}+y^{2} \leqslant z \leqslant 1\right\} Ω = { ( x , y , z ) ∣ x 2 + y 2 ⩽ z ⩽ 1 }  , 则 Ω \Omega Ω   的形心的坚坐标 z ˉ = \bar{z}= z ˉ = 
(12) 空间区域的形心:空间有界闭区域 Ω \Omega Ω   的形心坐标为 x ˉ = 1 V ∭ Ω x   d v , y ˉ = 1 V ∭ Ω y   d v , z ˉ = 1 V ∭ Ω z   d v , \displaystyle \begin{aligned} \bar{x} & =\frac{1}{V} \iiint_{\Omega} x \mathrm{~d} v, \\\bar{y} & =\frac{1}{V} \iiint_{\Omega} y \mathrm{~d} v, \\\bar{z} & =\frac{1}{V} \iiint_{\Omega} z \mathrm{~d} v, \end{aligned} x ˉ y ˉ  z ˉ  = V 1  ∭ Ω  x   d v , = V 1  ∭ Ω  y   d v , = V 1  ∭ Ω  z   d v ,  其中 V = ∭ Ω d v V=\iiint_{\Omega} \mathrm{d} v V = ∭ Ω  d v   为区域 Ω \Omega Ω   的体积.  答 应填 2 3 \frac{2}{3} 3 2   .
用面积辅助计算 z ˉ = ∭ Ω z d V ∭ Ω d V = π / 3 π / 2 = 2 3 \displaystyle \begin{aligned}\bar{z}=\frac{\iiint_{\Omega} z d V}{\iiint_{\Omega} d V}=\frac{\pi / 3}{\pi / 2}=\frac{2}{3}\end{aligned} z ˉ = ∭ Ω  d V ∭ Ω  z d V  = π /2 π /3  = 3 2   ∭ Ω z d V = ∫ 0 1 d z ∬ D z z d x d y = ∫ 0 1 π z 2 d z = π 3 \displaystyle \begin{aligned}\iiint_{\Omega} z d V=\int_0^1 d z \iint_{D_z} z d x d y=\int_0^1 \pi z^2 d z=\frac{\pi}{3}\end{aligned} ∭ Ω  z d V = ∫ 0 1  d z ∬ D z   z d x d y = ∫ 0 1  π z 2 d z = 3 π   ∭ Ω d V = ∫ 0 1 d z ∬ D z d x d y = ∫ 0 1 π z d z = π 2 \displaystyle \begin{aligned}\iiint_{\Omega} d V=\int_0^1 d z \iint_{D_z} d x d y=\int_0^1 \pi z d z=\frac{\pi}{2}\end{aligned} ∭ Ω  d V = ∫ 0 1  d z ∬ D z   d x d y = ∫ 0 1  π z d z = 2 π   直接硬算 解 设 D = { ( x , y ) ∣ x 2 + y 2 ⩽ 1 } D=\left\{(x, y) \mid x^2+y^2 \leqslant 1\right\} D = { ( x , y ) ∣ x 2 + y 2 ⩽ 1 }  , 则
z ˉ = ∬ Ω z   d x   d y   d z ∭ Ω d x   d y   d z = 2 3 . \displaystyle \begin{aligned} \bar{z}=\frac{\iint_{\Omega} z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z}{\iiint_{\Omega} \mathrm{d} x \mathrm{~d} y \mathrm{~d} z}=\frac{2}{3} . \end{aligned} z ˉ = ∭ Ω  d x   d y   d z ∬ Ω  z   d x   d y   d z  = 3 2  .  ∭ Ω d x   d y   d z = ∬ D   d x   d y ∫ x 2 + y 2 1   d z \displaystyle \begin{aligned} \iiint_{\Omega} \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\iint_D \mathrm{~d} x \mathrm{~d} y \int_{x^2+y^2}^1 \mathrm{~d} z\end{aligned} ∭ Ω  d x   d y   d z = ∬ D    d x   d y ∫ x 2 + y 2 1    d z  = ∬ D ( 1 − x 2 − y 2 ) d x   d y \displaystyle \begin{aligned}=\iint_D\left(1-x^2-y^2\right) \mathrm{d} x \mathrm{~d} y\end{aligned} = ∬ D  ( 1 − x 2 − y 2 ) d x   d y  = ∫ 0 2 π d θ ∫ 0 1 ( 1 − r 2 ) r   d r = π 2 , \displaystyle \begin{aligned} =\int_0^{2 \pi} \mathrm{d} \theta \int_0^1\left(1-r^2\right) r \mathrm{~d} r=\frac{\pi}{2}, \end{aligned} = ∫ 0 2 π  d θ ∫ 0 1  ( 1 − r 2 ) r   d r = 2 π  ,  ∭ Ω z   d x   d y   d z = ∬ D   d x   d y ∫ x 2 + y 2 1 z   d z \displaystyle \begin{aligned} \iiint_{\Omega} z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\iint_D \mathrm{~d} x \mathrm{~d} y \int_{x^2+y^2}^1 z \mathrm{~d} z\end{aligned} ∭ Ω  z   d x   d y   d z = ∬ D    d x   d y ∫ x 2 + y 2 1  z   d z  = 1 2 ∬ D [ 1 − ( x 2 + y 2 ) 2 ] d x   d y \displaystyle \begin{aligned}=\frac{1}{2} \iint_D\left[1-\left(x^2+y^2\right)^2\right] \mathrm{d} x \mathrm{~d} y\end{aligned} = 2 1  ∬ D  [ 1 − ( x 2 + y 2 ) 2 ] d x   d y  = 1 2 ∫ 0 2 π d θ ∫ 0 1 ( 1 − r 4 ) r   d r = π 3 , \displaystyle \begin{aligned} =\frac{1}{2} \int_0^{2 \pi} \mathrm{d} \theta \int_0^1\left(1-r^4\right) r \mathrm{~d} r=\frac{\pi}{3}, \end{aligned} = 2 1  ∫ 0 2 π  d θ ∫ 0 1  ( 1 − r 4 ) r   d r = 3 π  ,  注 由 Ω \Omega Ω   的对称性,知形心的横坐标与纵坐标 x ˉ = y ˉ = 0 \bar{x}=\bar{y}=0 x ˉ = y ˉ  = 0  . (13) (13) 设 α 1 = ( 1 , 2 , − 1 , 0 ) T , α 2 = ( 1 , 1 , 0 , 2 ) T \boldsymbol{\alpha}_1=(1,2,-1,0)^{\mathrm{T}} \text{,} \boldsymbol{\alpha}_2=(1,1,0,2)^{\mathrm{T}} α 1  = ( 1 , 2 , − 1 , 0 ) T , α 2  = ( 1 , 1 , 0 , 2 ) T   , α 3 = ( 2 , 1 , 1 , a ) T \alpha_3=(2,1,1, a)^{\mathrm{T}} α 3  = ( 2 , 1 , 1 , a ) T   。若由 α 1 , α 2 , α 3 \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 α 1  , α 2  , α 3    生成的向量空间的维数为 2 ,则 a = a= a =   \qquad   -
(13) 答 应填 6 .  解 对矩阵 ( α 1 , α 2 , α 3 ) \left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\right) ( α 1  , α 2  , α 3  )   作初等行变换,( α 1 , α 2 , α 3 ) = ( 1 1 2 2 1 1 − 1 0 1 0 2 a ) → ( 1 1 2 0 1 3 0 0 a − 6 0 0 0 ) , \displaystyle \left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\right)=\left(\begin{array}{ccc}1 & 1 & 2 \\2 & 1 & 1 \\-1 & 0 & 1 \\0 & 2 & a\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & 1 & 2 \\0 & 1 & 3 \\0 & 0 & a-6 \\0 & 0 & 0\end{array}\right), ( α 1  , α 2  , α 3  ) =  1 2 − 1 0  1 1 0 2  2 1 1 a   →  1 0 0 0  1 1 0 0  2 3 a − 6 0   ,  由于此矩阵的秩为 2 , 故 a = 6 a=6 a = 6  .
(14) 设随机变量 X X X   的概率分布为 P { X = k } = C k ! , k = 0 , 1 , 2 , ⋯ P\{X=k\}=\frac{C}{k !}, k=0,1,2, \cdots P { X = k } = k ! C  , k = 0 , 1 , 2 , ⋯  , 则 E ( X 2 ) = E\left(X^{2}\right)= E ( X 2 ) = 
(14) 确定常数 C C C 利用规范性求参数:概率分布的总和等于 1 :∑ k = 0 ∞ P { X = k } = 1 \displaystyle \sum_{k=0}^{\infty} P\{X=k\} = 1 k = 0 ∑ ∞  P { X = k } = 1  。 由给定的概率分布:∑ k = 0 ∞ P { X = k } = ∑ k = 0 ∞ C k ! = C ∑ k = 0 ∞ 1 k ! = 1 → e = ∑ n = 0 ∞ 1 n ! C = e − 1 \displaystyle \sum_{k=0}^{\infty} P\{X=k\}=\sum_{k=0}^{\infty} \frac{C}{k !}=C \sum_{k=0}^{\infty} \frac{1}{k !}=1\xrightarrow[]{\mathrm{e}=\sum_{n=0}^{\infty} \frac{1}{n !}}C = e^{-1} k = 0 ∑ ∞  P { X = k } = k = 0 ∑ ∞  k ! C  = C k = 0 ∑ ∞  k ! 1  = 1 e = ∑ n = 0 ∞  n ! 1   C = e − 1   识别泊松分布 泊松分布的概率公式为 P { X = k } = λ k k ! e − λ P\{X=k\} = \frac{\lambda^k}{k!} e^{-\lambda} P { X = k } = k ! λ k  e − λ  。 由 C C C   的值,可知 X X X   服从参数为 1 的泊松分布。  在本题中,λ = 1 \lambda = 1 λ = 1  。 对于泊松分布,E ( X ) = λ E(X) = \lambda E ( X ) = λ   且 D ( X ) = λ D(X) = \lambda D ( X ) = λ  。   计算 E ( X 2 ) E\left(X^2\right) E ( X 2 ) 因此,E ( X 2 ) = D ( X ) + ( E ( X ) ) 2 = 1 + 1 = 2 E\left(X^2\right) = D(X) + (E(X))^2 = 1 + 1 = 2 E ( X 2 ) = D ( X ) + ( E ( X ) ) 2 = 1 + 1 = 2  。  答 应填 2 .  三、解答题 (本题共 9 小题, 共 94 分, 解答应写出文字说明、证明过程或演算步骤.)
(15) (本题满分 10 分)  求微分方程 y ′ ′ − 3 y ′ + 2 y = 2 x e x y^{\prime \prime}-3 y^{\prime}+2 y=2 x \mathrm{e}^{x} y ′′ − 3 y ′ + 2 y = 2 x e x   的通解.
(15) 解题步骤 求对应的齐次方程的通解.(特征方程法) 求原方程的一个特解.(待定系数法)  特征方程法求齐次方程的通解. 对应的齐次线性方程 y ′ ′ − 3 y ′ + 2 y = 0 y^{\prime \prime}-3 y^{\prime}+2 y=0 y ′′ − 3 y ′ + 2 y = 0 特征方程为 λ 2 − 3 λ + 2 = 0 \lambda^2-3 \lambda+2=0 λ 2 − 3 λ + 2 = 0  . ( λ − 1 ) ( λ − 2 ) = 0 ⇒ λ 1 = 1 , λ 2 = 2 \displaystyle \begin{aligned} & (\lambda-1)(\lambda-2)=0 \Rightarrow \lambda_1=1, \lambda_2=2 \end{aligned}  ( λ − 1 ) ( λ − 2 ) = 0 ⇒ λ 1  = 1 , λ 2  = 2    y = C 1 e x + C 2 e 2 x . \displaystyle \begin{aligned} y=C_1 e^x+C_2 e^{2 x} . \end{aligned} y = C 1  e x + C 2  e 2 x .   待定系数法求特解 设原方程的一个特解为y ∗ = ( a x + b ) x e x y^*=(a x+b) x \mathrm{e}^x y ∗ = ( a x + b ) x e x ( y ∗ ) ′ = ( a x 2 + b x ) e x + ( 2 a x + b ) e x = ( a x 2 + ( 2 a + b ) x + b ) e x \left(y^*\right)^{\prime}=\left(a x^2+b x\right) e^x+(2 a x+b) e^x=\left(a x^2+(2 a+b) x+b\right) e^x ( y ∗ ) ′ = ( a x 2 + b x ) e x + ( 2 a x + b ) e x = ( a x 2 + ( 2 a + b ) x + b ) e x y ′ ′ = [ a x 2 + ( 2 a + b ) x + b ] e x + [ 2 a x + 2 a + b ] e x \displaystyle \begin{aligned} y'' =\left[a x^2+(2 a+b) x+b\right] e^x+[2 a x+2 a+b] e^x \end{aligned} y ′′ = [ a x 2 + ( 2 a + b ) x + b ] e x + [ 2 a x + 2 a + b ] e x  = [ a x 2 + ( 4 a + b ) x + 2 ( a + b ) ] e x . \displaystyle \begin{aligned} =\left[a x^2+(4 a+b) x+2(a+b)\right] e^x . \end{aligned} = [ a x 2 + ( 4 a + b ) x + 2 ( a + b ) ] e x .   将y , y ′ , y ′ ′ \displaystyle \begin{aligned}y,y',y''\end{aligned} y , y ′ , y ′′   代入y ′ ′ − 3 y ′ + 2 y = 2 x e x y^{\prime \prime}-3 y^{\prime}+2 y=2 x \mathrm{e}^{x} y ′′ − 3 y ′ + 2 y = 2 x e x  得 ( a x 2 + 4 a x + b x + 2 a + 2 b ) e x − 3 ( a x 2 + 2 a x + b x + b ) e x + 2 ( a x 2 + b x ) e x = 2 x e x \left(a x^2+4 a x+b x+2 a+2 b\right) \mathrm{e}^x-3\left(a x^2+2 a x+b x+b\right) \mathrm{e}^x+2\left(a x^2+b x\right) \mathrm{e}^x=2 x \mathrm{e}^x ( a x 2 + 4 a x + b x + 2 a + 2 b ) e x − 3 ( a x 2 + 2 a x + b x + b ) e x + 2 ( a x 2 + b x ) e x = 2 x e x 同时出现三项:x 2 e x , x e x , e x \displaystyle \begin{aligned}x^2 e^x \text{,} x e^x \text{,} e^x\end{aligned} x 2 e x , x e x , e x   ,对比它们的系数 x 2 e x a − 3 a + 2 a = 0 \displaystyle \begin{aligned} & x^2 e^x \quad a-3 a+2 a=0 \end{aligned}  x 2 e x a − 3 a + 2 a = 0  x e x 4 a + b − 6 a − 3 b + 2 b = 2 ⇒ a = − 1 \displaystyle \begin{aligned} x e^x \quad 4 a+b-6 a-3 b+2 b=2 \Rightarrow a=-1 \end{aligned} x e x 4 a + b − 6 a − 3 b + 2 b = 2 ⇒ a = − 1  e x 2 ( a + b ) − 3 b = 2 a − b = 0 ⇒ b = − 2 \displaystyle \begin{aligned} e^x \quad 2(a+b)-3 b=2 a-b=0 \quad \Rightarrow b=-2 \end{aligned} e x 2 ( a + b ) − 3 b = 2 a − b = 0 ⇒ b = − 2    求得特解y ∗ = ( − x 2 − 2 x ) e x \displaystyle \begin{aligned} y^*=\left(-x^2-2 x\right) e^x \end{aligned} y ∗ = ( − x 2 − 2 x ) e x    齐次特解和特解组合得非齐次的通解 因此, 原方程的通解为y = Y + y ∗ = C 1 e x + C 2 e 2 x − ( x 2 + 2 x ) e x , y=Y+y^*=C_1 \mathrm{e}^x+C_2 \mathrm{e}^{2 x}-\left(x^2+2 x\right) \mathrm{e}^x, y = Y + y ∗ = C 1  e x + C 2  e 2 x − ( x 2 + 2 x ) e x ,   1987 年数二试题 求微分方程 y ′ ′ + 2 y ′ + y = x e x y^{\prime \prime}+2 y^{\prime}+y=x \mathrm{e}^x y ′′ + 2 y ′ + y = x e x   的通解. 1990 年数一试题求微分方程 y ′ ′ + 4 y ′ + 4 y = e − 2 x y^{\prime \prime}+4 y^{\prime}+4 y=\mathrm{e}^{-2 x} y ′′ + 4 y ′ + 4 y = e − 2 x   的通解. 1990 年数二试题求微分方程 y ′ ′ + 4 y ′ + 4 y = e a x y^{\prime \prime}+4 y^{\prime}+4 y=\mathrm{e}^{a x} y ′′ + 4 y ′ + 4 y = e a x   的通解,其中 a a a   为实数。 1991 年数二试题 求微分方程 y ′ ′ + y = x + cos  x y^{\prime \prime}+y=x+\cos x y ′′ + y = x + cos x   的通解. 1992 年数一试题 求微分方程 y ′ ′ + 2 y ′ − 3 y = e − 3 x y^{\prime \prime}+2 y^{\prime}-3 y=\mathrm{e}^{-3 x} y ′′ + 2 y ′ − 3 y = e − 3 x   的通解。 1992 年数二试题 求微分方程 y ′ ′ − 3 y ′ + 2 y = x e x y^{\prime \prime}-3 y^{\prime}+2 y=x \mathrm{e}^x y ′′ − 3 y ′ + 2 y = x e x   的通解。 1994 年数二试题 求微分方程 y ′ ′ + a 2 y = sin  x y^{\prime \prime}+a^2 y=\sin x y ′′ + a 2 y = sin x   的通解, 其中常数 a > 0 a>0 a > 0  . 1996 年数一试题 微分方程 y ′ ′ − 2 y ′ + 2 y = e x y^{\prime \prime}-2 y^{\prime}+2 y=\mathrm{e}^x y ′′ − 2 y ′ + 2 y = e x   的通解为 \qquad   . 2007 年数一、二试题 二阶常系数非齐次线性微分方程y ′ ′ − 4 y ′ + 3 y = 2 e 2 x y^{\prime \prime}-4 y^{\prime}+3 y=2 \mathrm{e}^{2 x} y ′′ − 4 y ′ + 3 y = 2 e 2 x   的通解为 \qquad 特征方程法  特征方程 λ 2 + p λ + q = 0 \displaystyle \begin{aligned} \lambda^2 + p\lambda + q = 0 \end{aligned} λ 2 + p λ + q = 0    的根 微分方程 y ′ ′ + p y ′ + q y = 0 \displaystyle \begin{aligned} y'' + py' + qy = 0 \end{aligned} y ′′ + p y ′ + q y = 0    的通解 两个不相等的实根 λ 1 , λ 2 \displaystyle \begin{aligned} \lambda_1, \lambda_2 \end{aligned} λ 1  , λ 2    y = C 1 e λ 1 x + C 2 e λ 2 x \displaystyle \begin{aligned} y = C_1e^{\lambda_1 x} + C_2e^{\lambda_2 x} \end{aligned} y = C 1  e λ 1  x + C 2  e λ 2  x  两个相等的实根 λ 1 = λ 2 \displaystyle \begin{aligned} \lambda_1 = \lambda_2 \end{aligned} λ 1  = λ 2    y = ( C 1 + C 2 x ) e λ 1 x \displaystyle \begin{aligned} y = (C_1 + C_2 x)e^{\lambda_1 x} \end{aligned} y = ( C 1  + C 2  x ) e λ 1  x  对共轭复根 λ 1 , 2 = α ± β i \displaystyle \begin{aligned} \lambda_{1,2} = \alpha \pm \beta i \end{aligned} λ 1 , 2  = α ± β i   y = e α x ( C 1 cos  β x + C 2 sin  β x ) \displaystyle \begin{aligned} y = e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x) \end{aligned} y = e αx ( C 1  cos β x + C 2  sin β x )  
待定系数法 当 f ( x ) = e λ x P m ( x ) f(x)=\mathrm{e}^{\lambda x} P_m(x) f ( x ) = e λ x P m  ( x )  , 其中 λ \lambda λ   为常数, P m ( x ) P_m(x) P m  ( x )   是 x x x   的一个 m m m  次多项式时, y ′ ′ + p y ′ + q y = f ( x ) y^{\prime \prime}+p y^{\prime}+q y=f(x) y ′′ + p y ′ + q y = f ( x )   有形如y ∗ = x k R m ( x ) e λ x y^*=x^k R_m(x) \mathrm{e}^{\lambda x} y ∗ = x k R m  ( x ) e λ x  的特解, x k x^k x k 当 λ \lambda λ   不是特征方程的根时, k = 0 k=0 k = 0  ; 当 λ \lambda λ   是特征方程的单根时, k = 1 k=1 k = 1  ; 当 λ \lambda λ   是特征方程的重根时, k = 2 k=2 k = 2  . 其中 R m ( x ) R_m(x) R m  ( x )   是与 P m ( x ) P_m(x) P m  ( x )   同次的多项式. e λ x \displaystyle \begin{aligned}\mathrm{e}^{\lambda x}\end{aligned} e λ x   照抄  (16) (本题满分 10 分)  求函数 f ( x ) = ∫ 1 x 2 ( x 2 − t ) e − t 2   d t \displaystyle f(x)=\int_{1}^{x^{2}}\left(x^{2}-t\right) \mathrm{e}^{-t^{2}} \mathrm{~d} t f ( x ) = ∫ 1 x 2  ( x 2 − t ) e − t 2   d t   的单调区间与极值.
(16) 整体思路总结: 对 f ( x ) f(x) f ( x )   进行分解并求导。 通过解方程找到驻点 x = 0 , ± 1 x = 0, \pm 1 x = 0 , ± 1  。 分析 f ′ ( x ) f'(x) f ′ ( x )   的符号来确定单调区间。 计算极值点 x = 0 , ± 1 x = 0, \pm 1 x = 0 , ± 1   时的 f ( x ) f(x) f ( x )   值。  求 f ( x ) f(x) f ( x )   的导数 分解 f ( x ) f(x) f ( x ) f ( x ) = 拆开 x 2 ∫ 1 x 2 e − t 2   d t − ∫ 1 x 2 t e − t 2   d t \displaystyle f(x) \xlongequal[]{\text{拆开}}x^2 \int_1^{x^2} e^{-t^2} \, \mathrm{d}t - \int_1^{x^2} t e^{-t^2} \, \mathrm{d}t f ( x ) 拆开  x 2 ∫ 1 x 2  e − t 2 d t − ∫ 1 x 2  t e − t 2 d t  求导 f ′ ( x ) f'(x) f ′ ( x ) 得 f ′ ( x ) = 2 x ∫ 1 x 2 e − t 2   d t + 2 x 3 e − x 4 − 2 x 3 e − x 4 = 后两项相减为 0 2 x ∫ 1 x 2 e − t 2   d t \displaystyle f'(x) = 2x \int_1^{x^2} e^{-t^2} \, \mathrm{d}t + 2x^3 e^{-x^4} - 2x^3 e^{-x^4}\xlongequal[]{\text{后两项相减为}0}2x \int_1^{x^2} e^{-t^2} \, \mathrm{d}t f ′ ( x ) = 2 x ∫ 1 x 2  e − t 2 d t + 2 x 3 e − x 4 − 2 x 3 e − x 4 后两项相减为 0  2 x ∫ 1 x 2  e − t 2 d t    确定驻点 解方程 f ′ ( x ) = 0 → ∫ 1 x 2 = 0 2 x = 0 x = 0 , ± 1 \displaystyle f'(x) = 0 \xrightarrow[\int_{1}^{x^{2}}=0]{2x=0}x = 0, \pm 1 f ′ ( x ) = 0 2 x = 0 ∫ 1 x 2  = 0  x = 0 , ± 1  - 分析 f ′ ( x ) f'(x) f ′ ( x )   的符号 在区间 ( − ∞ , − 1 ) (-\infty, -1) ( − ∞ , − 1 ) f ′ ( x ) = 2 x ⏟ < 0 ∫ 1 x 2 e − t 2 ⏟ 因 x 2 > 1 ,则 > 0   d t → 负正 < 0 \displaystyle f'(x) = \underbrace{2x}_{<0} \underbrace{\int_1^{x^2} e^{-t^2}}_{\text{因}x^2>1\text{,则}>0} \, \mathrm{d}t \xrightarrow[]{\text{负正}}<0 f ′ ( x ) = < 0 2 x   因 x 2 > 1 ,则 > 0 ∫ 1 x 2  e − t 2   d t 负正  < 0 f ′ ( x ) < 0 f'(x) < 0 f ′ ( x ) < 0  ,f ( x ) f(x) f ( x )   递减 在区间 ( − 1 , 0 ) (-1, 0) ( − 1 , 0 ) f ′ ( x ) = 2 x ⏟ < 0 ∫ 1 x 2 e − t 2 ⏟ 因 x 2 < 1 ,则 < 0   d t → 负负 > 0 \displaystyle f'(x) = \underbrace{2x}_{<0} \underbrace{\int_1^{x^2} e^{-t^2}}_{\text{因}x^2<1\text{,则}<0} \, \mathrm{d}t\xrightarrow[]{\text{负负}} >0 f ′ ( x ) = < 0 2 x   因 x 2 < 1 ,则 < 0 ∫ 1 x 2  e − t 2   d t 负负  > 0 f ′ ( x ) > 0 f'(x) > 0 f ′ ( x ) > 0  ,f ( x ) f(x) f ( x )   递增 在区间 ( 0 , 1 ) (0, 1) ( 0 , 1 ) f ′ ( x ) = 2 x ⏟ > 0 ∫ 1 x 2 e − t 2 ⏟ 因 x 2 < 1 ,则 < 0   d t → 正负 < 0 \displaystyle f'(x) = \underbrace{2x}_{>0} \underbrace{\int_1^{x^2} e^{-t^2}}_{\text{因}x^2<1\text{,则}<0} \, \mathrm{d}t \xrightarrow[]{\text{正负}} <0 f ′ ( x ) = > 0 2 x   因 x 2 < 1 ,则 < 0 ∫ 1 x 2  e − t 2   d t 正负  < 0 f ′ ( x ) < 0 f'(x) < 0 f ′ ( x ) < 0  ,f ( x ) f(x) f ( x )   递减 在区间 ( 1 , + ∞ ) (1, +\infty) ( 1 , + ∞ ) f ′ ( x ) = 2 x ⏟ > 0 ∫ 1 x 2 e − t 2 ⏟ 因 x 2 > 1 ,则 > 0   d t → 正正 > 0 \displaystyle f'(x) = \underbrace{2x}_{>0} \underbrace{\int_1^{x^2} e^{-t^2}}_{\text{因}x^2>1\text{,则}>0} \, \mathrm{d}t \xrightarrow[]{\text{正正}}>0 f ′ ( x ) = > 0 2 x   因 x 2 > 1 ,则 > 0 ∫ 1 x 2  e − t 2   d t 正正  > 0 f ′ ( x ) > 0 f'(x) > 0 f ′ ( x ) > 0  ,f ( x ) f(x) f ( x )   递增  确定极值:增减性如图:↘ ↗ ↘ ↗ \searrow\nearrow\searrow\nearrow ↘↗↘↗ 计算 f ( 0 ) f(0) f ( 0 ) f ( 0 ) = − ∫ 1 0 t e − t 2   d t = 1 2 ( 1 − e − 1 ) \displaystyle f(0) = -\int_1^0 t e^{-t^2} \, \mathrm{d}t = \frac{1}{2}(1 - e^{-1}) f ( 0 ) = − ∫ 1 0  t e − t 2 d t = 2 1  ( 1 − e − 1 )  计算 f ( ± 1 ) f(\pm 1) f ( ± 1 ) f ( ± 1 ) = ∫ 1 1 ( 1 − t ) e − t 2   d t = 0 \displaystyle f(\pm 1) = \int_1^1 (1 - t) e^{-t^2} \, \mathrm{d}t = 0 f ( ± 1 ) = ∫ 1 1  ( 1 − t ) e − t 2 d t = 0  得出结论 单调增加区间:( − 1 , 0 ) (-1, 0) ( − 1 , 0 )   和 ( 1 , + ∞ ) (1, +\infty) ( 1 , + ∞ )  单调递减区间:( − ∞ , − 1 ) (-\infty, -1) ( − ∞ , − 1 )   和 ( 0 , 1 ) (0, 1) ( 0 , 1 )  两个极小值点:x = ± 1 x = \pm 1 x = ± 1   时 f ( ± 1 ) = 0 f(\pm 1) = 0 f ( ± 1 ) = 0  一个极大值点:x = 0 x = 0 x = 0   时 f ( 0 ) = 1 2 ( 1 − e − 1 ) f(0) = \frac{1}{2}(1 - e^{-1}) f ( 0 ) = 2 1  ( 1 − e − 1 )    (17) (本题满分 10 分) (抽象题 )  ( I ) 比较 ∫ 0 1 ∣ ln  t ∣ [ ln  ( 1 + t ) ] n   d t \displaystyle \int_{0}^{1}|\ln t|[\ln (1+t)]^{n} \mathrm{~d} t ∫ 0 1  ∣ ln t ∣ [ ln ( 1 + t ) ] n   d t   与 ∫ 0 1 t n ∣ ln  t ∣ d t ( n = 1 , 2 , ⋯   ) \displaystyle \int_{0}^{1} t^{n}|\ln t| \mathrm{d} t(n=1,2, \cdots) ∫ 0 1  t n ∣ ln t ∣ d t ( n = 1 , 2 , ⋯ )   的大小, 说明理由;  ( II ) 记 u n = ∫ 0 1 ∣ ln  t ∣ [ ln  ( 1 + t ) ] n   d t ( n = 1 , 2 , ⋯   ) \displaystyle u_{n}=\int_{0}^{1}|\ln t|[\ln (1+t)]^{n} \mathrm{~d} t(n=1,2, \cdots) u n  = ∫ 0 1  ∣ ln t ∣ [ ln ( 1 + t ) ] n   d t ( n = 1 , 2 , ⋯ )  , 求极限 lim  n → ∞ u n \displaystyle \lim _{n \rightarrow \infty} u_{n} n → ∞ lim  u n   .
(17) 解 (I ) 当 0 ⩽ t ⩽ 1 0 \leqslant t \leqslant 1 0 ⩽ t ⩽ 1   时, 因为 0 ⩽ ln  ( 1 + t ) ⩽ t 0 \leqslant \ln (1+t) \leqslant t 0 ⩽ ln ( 1 + t ) ⩽ t  , 所以
0 ⩽ ∣ ln  t ∣ [ ln  ( 1 + t ) ] n ⩽ t n ∣ ln  t ∣ , 0 \leqslant|\ln t|[\ln (1+t)]^n \leqslant t^n|\ln t|, 0 ⩽ ∣ ln t ∣ [ ln ( 1 + t ) ] n ⩽ t n ∣ ln t ∣ ,  由定积分的性质,得 ∫ 0 1 ∣ ln  t ∣ [ ln  ( 1 + t ) ] n   d t ⩽ ∫ 0 1 t n ∣ ln  t ∣ d t ( n = 1 , 2 , ⋯   ) \displaystyle \quad \int_0^1|\ln t|[\ln (1+t)]^n \mathrm{~d} t \leqslant \int_0^1 t^n|\ln t| \mathrm{d} t(n=1,2, \cdots) ∫ 0 1  ∣ ln t ∣ [ ln ( 1 + t ) ] n   d t ⩽ ∫ 0 1  t n ∣ ln t ∣ d t ( n = 1 , 2 , ⋯ )  .  ( II) 由 ( I ) 知0 ⩽ u n = ∫ 0 1 ∣ ln  t ∣ [ ln  ( 1 + t ) ] n   d t ⩽ ∫ 0 1 t n ∣ ln  t ∣ d t . \displaystyle 0 \leqslant u_n=\int_0^1|\ln t|[\ln (1+t)]^n \mathrm{~d} t \leqslant \int_0^1 t^n|\ln t| \mathrm{d} t . 0 ⩽ u n  = ∫ 0 1  ∣ ln t ∣ [ ln ( 1 + t ) ] n   d t ⩽ ∫ 0 1  t n ∣ ln t ∣ d t .  因为∫ 0 1 t n ∣ ln  t ∣ d t = − ∫ 0 1 t n ln  t   d t = − 1 n + 1 ∫ 0 1 ln  t   d ( t n + 1 ) = − t n + 1 n + 1 ln  t ∣ 0 1 + 1 n + 1 ∫ 0 1 t n   d t = 1 ( n + 1 ) 2 , \displaystyle \int_0^1 t^n|\ln t| \mathrm{d} t=-\int_0^1 t^n \ln t \mathrm{~d} t=-\frac{1}{n+1} \int_0^1 \ln t \mathrm{~d}\left(t^{n+1}\right)=-\left.\frac{t^{n+1}}{n+1} \ln t\right|_0 ^1+\frac{1}{n+1} \int_0^1 t^n \mathrm{~d} t=\frac{1}{(n+1)^2}, ∫ 0 1  t n ∣ ln t ∣ d t = − ∫ 0 1  t n ln t   d t = − n + 1 1  ∫ 0 1  ln t   d ( t n + 1 ) = − n + 1 t n + 1  ln t  0 1  + n + 1 1  ∫ 0 1  t n   d t = ( n + 1 ) 2 1  ,  所以 lim  n → ∞ ∫ 0 1 t n ∣ ln  t ∣ d t = 0 \displaystyle \lim _{n \rightarrow \infty} \int_0^1 t^n|\ln t| \mathrm{d} t=0 n → ∞ lim  ∫ 0 1  t n ∣ ln t ∣ d t = 0  . 故由夹逼准则知 lim  n → ∞ u n = 0 \displaystyle \lim _{n \rightarrow \infty} u_n=0 n → ∞ lim  u n  = 0  .  注(1)本题第一问用到基本不等式: x 1 + x < ln  ( 1 + x ) < x , x ∈ ( 0 , + ∞ ) \frac{x}{1+x}<\ln (1+x)<x, x \in(0,+\infty) 1 + x x  < ln ( 1 + x ) < x , x ∈ ( 0 , + ∞ )  .  (2)  第二问实际上有更一般的结论.  若 f ( x ) f(x) f ( x )   在 [ 0 , 1 ] [0,1] [ 0 , 1 ]   上连续, 则 lim  n → ∞ ∫ 0 1 x n f ( x ) d x = 0 \displaystyle \lim _{n \rightarrow \infty} \int_0^1 x^n f(x) \mathrm{d} x=0 n → ∞ lim  ∫ 0 1  x n f ( x ) d x = 0   (可用夹逼准则简单验证). 由于 lim  r → 0 + t ∣ ln  t ∣ = 0 \displaystyle \lim _{r \rightarrow 0^{+}} t|\ln t|=0 r → 0 + lim  t ∣ ln t ∣ = 0  , 记 f ( t ) = t ∣ ln  t ∣ , 0 < t ⩽ 1 f(t)=t|\ln t|, 0<t \leqslant 1 f ( t ) = t ∣ ln t ∣ , 0 < t ⩽ 1  , 则可补充定义 f ( 0 ) = 0 f(0)=0 f ( 0 ) = 0  . 这样 f ( t ) = t ∣ ln  t ∣ f(t)=t|\ln t| f ( t ) = t ∣ ln t ∣   在 [ 0 , 1 ] [0,1] [ 0 , 1 ]   上连续, 再根据上面的结论便有lim  n → ∞ ∫ 0 1 t n − 1 ⋅ t ∣ ln  t ∣ d t = 0 , \displaystyle \begin{aligned} \lim _{n \rightarrow \infty} \int_0^1 t^{n-1} \cdot t|\ln t| \mathrm{d} t=0, \end{aligned} n → ∞ lim  ∫ 0 1  t n − 1 ⋅ t ∣ ln t ∣ d t = 0 ,  lim  n → ∞ ∫ 0 1 ∣ ln  t ∣ [ ln  ( 1 + t ) ] n   d t = 0. \displaystyle \begin{aligned} \lim _{n \rightarrow \infty} \int_0^1|\ln t|[\ln (1+t)]^n \mathrm{~d} t=0 . \end{aligned} n → ∞ lim  ∫ 0 1  ∣ ln t ∣ [ ln ( 1 + t ) ] n   d t = 0.  (18) (本题满分 10 分)  求幂级数 ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 x 2 n \displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} x^{2 n} n = 1 ∑ ∞  2 n − 1 ( − 1 ) n − 1  x 2 n   的收敛域及和函数.
(18) 解 记 u n ( x ) = ( − 1 ) n − 1 2 n − 1 x 2 n u_n(x)=\frac{(-1)^{n-1}}{2 n-1} x^{2 n} u n  ( x ) = 2 n − 1 ( − 1 ) n − 1  x 2 n  . 由于
lim  n → ∞ ∣ u n + 1 ( x ) u n ( x ) ∣ = lim  n → ∞ 2 n − 1 2 n + 1 x 2 = x 2 , \displaystyle \lim _{n \rightarrow \infty}\left|\frac{u_{n+1}(x)}{u_n(x)}\right|=\lim _{n \rightarrow \infty} \frac{2 n-1}{2 n+1} x^2=x^2, n → ∞ lim   u n  ( x ) u n + 1  ( x )   = n → ∞ lim  2 n + 1 2 n − 1  x 2 = x 2 ,  所以,当 ∣ x ∣ < 1 |x|<1 ∣ x ∣ < 1   时, ∑ n = 1 ∞ u n ( x ) \displaystyle \sum_{n=1}^{\infty} u_n(x) n = 1 ∑ ∞  u n  ( x )   绝对收玫; 当 ∣ x ∣ > 1 |x|>1 ∣ x ∣ > 1   时, lim  n → ∞ ∣ u n ( x ) ∣ = + ∞ , ∑ n = 1 ∞ u n ( x ) \displaystyle \lim _{n \rightarrow \infty}\left|u_n(x)\right|=+\infty, \sum_{n=1}^{\infty} u_n(x) n → ∞ lim  ∣ u n  ( x ) ∣ = + ∞ , n = 1 ∑ ∞  u n  ( x )   发散. 因此帛级数 ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 x 2 n \displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} x^{2 n} n = 1 ∑ ∞  2 n − 1 ( − 1 ) n − 1  x 2 n   的收敛半径 R = 1 R=1 R = 1  .  当 x = ± 1 x= \pm 1 x = ± 1   时,∑ n = 1 ∞ u n ( ± 1 ) = ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 ,  \displaystyle \sum_{n=1}^{\infty} u_n( \pm 1)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} \text {, } n = 1 ∑ ∞  u n  ( ± 1 ) = n = 1 ∑ ∞  2 n − 1 ( − 1 ) n − 1  ,   根据莱布尼茨判别法知此级数收敛. 故案级数 ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 x 2 n \displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} x^{2 n} n = 1 ∑ ∞  2 n − 1 ( − 1 ) n − 1  x 2 n   的收敛域为 [ − 1 , 1 ] [-1,1] [ − 1 , 1 ]  .  设S ( x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 x 2 n − 1 ( − 1 ⩽ x ⩽ 1 ) . \displaystyle S(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} x^{2 n-1}(-1 \leqslant x \leqslant 1) . S ( x ) = n = 1 ∑ ∞  2 n − 1 ( − 1 ) n − 1  x 2 n − 1 ( − 1 ⩽ x ⩽ 1 ) .  由于 S ′ ( x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x 2 n − 2 = 1 1 + x 2 \displaystyle S^{\prime}(x)=\sum_{n=1}^{\infty}(-1)^{n-1} x^{2 n-2}=\frac{1}{1+x^2} S ′ ( x ) = n = 1 ∑ ∞  ( − 1 ) n − 1 x 2 n − 2 = 1 + x 2 1   , 且 S ( 0 ) = 0 S(0)=0 S ( 0 ) = 0  , 所以S ( x ) = ∫ 0 x d t 1 + t 2 = arctan  x , \displaystyle S(x)=\int_0^x \frac{\mathrm{d} t}{1+t^2}=\arctan x, S ( x ) = ∫ 0 x  1 + t 2 d t  = arctan x ,  从而∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 x 2 n = x S ( x ) = x arctan  x ( − 1 ⩽ x ⩽ 1 ) . \displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} x^{2 n}=x S(x)=x \arctan x(-1 \leqslant x \leqslant 1) . n = 1 ∑ ∞  2 n − 1 ( − 1 ) n − 1  x 2 n = x S ( x ) = x arctan x ( − 1 ⩽ x ⩽ 1 ) . (19) (本题满分 10 分)  设 P P P   为椭球面 S : x 2 + y 2 + z 2 − y z = 1 S: x^{2}+y^{2}+z^{2}-y z=1 S : x 2 + y 2 + z 2 − yz = 1   上的动点, 若 S S S   在点 P P P   处的切平面与 x O y x O y x O y   面垂直, 求点 P P P   的轨迹 C C C  , 并计算曲面积分 I = ∬ Σ ( x + 3 ) ∣ y − 2 z ∣ 4 + y 2 + z 2 − 4 y z   d S \displaystyle I=\iint_{\Sigma} \frac{(x+\sqrt{3})|y-2 z|}{\sqrt{4+y^{2}+z^{2}-4 y z}} \mathrm{~d} S I = ∬ Σ  4 + y 2 + z 2 − 4 yz  ( x + 3  ) ∣ y − 2 z ∣    d S  , 其中 Σ \displaystyle \Sigma Σ   是椭球面 S S S   位于曲线 C C C   上 方的部分. (抽象题 )
(19) 椭球面 S : x 2 + y 2 + z 2 − y z = 1 S: x^2+y^2+z^2-y z=1 S : x 2 + y 2 + z 2 − yz = 1   在点 P P P   处的法向量是 n = ( 2 x , 2 y − z , 2 z − y ) ,  n=(2 x, 2 y-z, 2 z-y) \text {, } n = ( 2 x , 2 y − z , 2 z − y ) ,  x O y x O y x O y   面的法向量是 k = ( 0 , 0 , 1 ) k=(0,0,1) k = ( 0 , 0 , 1 )  .S S S   在点 P P P   处的切平面与 x O y x O y x O y   面垂直的充分必要条件是 n ⋅ k = 2 z − y = 0 .  n \cdot k=2 z-y=0 \text {. } n ⋅ k = 2 z − y = 0 .  所以点 P P P   的轨迹 C C C   的方程为 { 2 z − y = 0 , x 2 + y 2 + z 2 − y z = 1 , \displaystyle \begin{aligned} \left\{\begin{array}{l}2 z-y=0, \\x^2+y^2+z^2-y z=1,\end{array}\right. \end{aligned} { 2 z − y = 0 , x 2 + y 2 + z 2 − yz = 1 ,   { 2 z − y = 0 , x 2 + 3 4 y 2 = 1. \displaystyle \begin{aligned} \left\{\begin{array}{l}2 z-y=0, \\x^2+\frac{3}{4} y^2=1 .\end{array}\right. \end{aligned} { 2 z − y = 0 , x 2 + 4 3  y 2 = 1.     取 D = { ( x , y ) ∣ x 2 + 3 4 y 2 ⩽ 1 } D=\left\{(x, y) \mid x^2+\frac{3}{4} y^2 \leqslant 1\right\} D = { ( x , y ) ∣ x 2 + 4 3  y 2 ⩽ 1 }  , 记曲面 Σ \displaystyle \Sigma Σ   的方程为 z = z ( x , y ) , ( x , y ) ∈ D z=z(x, y),(x, y) \in D z = z ( x , y ) , ( x , y ) ∈ D  . 由于1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 = 1 + ( 2 x y − 2 z ) 2 + ( 2 y − z y − 2 z ) 2 = 4 + y 2 + z 2 − 4 y z ∣ y − 2 z ∣ , \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2}=\sqrt{1+\left(\frac{2 x}{y-2 z}\right)^2+\left(\frac{2 y-z}{y-2 z}\right)^2}=\frac{\sqrt{4+y^2+z^2-4 y z}}{|y-2 z|}, 1 + ( ∂ x ∂ z  ) 2 + ( ∂ y ∂ z  ) 2  = 1 + ( y − 2 z 2 x  ) 2 + ( y − 2 z 2 y − z  ) 2  = ∣ y − 2 z ∣ 4 + y 2 + z 2 − 4 yz   ,   所以 I = ∬ D ( x + 3 ) ∣ y − 2 z ∣ 4 + y 2 + z 2 − 4 y z ⋅ 4 + y 2 + z 2 − 4 y z ∣ y − 2 z ∣ d x   d y = ∬ D ( x + 3 ) d x   d y . I=\iint_D \frac{(x+\sqrt{3})|y-2 z|}{\sqrt{4+y^2+z^2-4 y z}} \cdot \frac{\sqrt{4+y^2+z^2-4 y z}}{|y-2 z|} \mathrm{d} x \mathrm{~d} y=\iint_D(x+\sqrt{3}) \mathrm{d} x \mathrm{~d} y . I = ∬ D  4 + y 2 + z 2 − 4 yz  ( x + 3  ) ∣ y − 2 z ∣  ⋅ ∣ y − 2 z ∣ 4 + y 2 + z 2 − 4 yz   d x   d y = ∬ D  ( x + 3  ) d x   d y . 又因为 ∬ D x   d x   d y = 0 , ∬ D 3   d x   d y = 2 π \iint_D x \mathrm{~d} x \mathrm{~d} y=0, \iint_D \sqrt{3} \mathrm{~d} x \mathrm{~d} y=2 \pi ∬ D  x   d x   d y = 0 , ∬ D  3    d x   d y = 2 π  , 所以I = ∬ D ( x + 3 ) d x   d y = 2 π . I=\iint_D(x+\sqrt{3}) \mathrm{d} x \mathrm{~d} y=2 \pi . I = ∬ D  ( x + 3  ) d x   d y = 2 π .   注 正确写出轨迹方程 是后续解题的关键. (20) (本题满分 11 分)  设 A = ( λ 1 1 0 λ − 1 0 1 1 λ ) , b = ( a 1 1 ) \displaystyle \boldsymbol{A}=\left(\begin{array}{ccc}\lambda & 1 & 1 \\ 0 & \lambda-1 & 0 \\ 1 & 1 & \lambda\end{array}\right), \boldsymbol{b}=\left(\begin{array}{l}a \\ 1 \\ 1\end{array}\right) A =  λ 0 1  1 λ − 1 1  1 0 λ   , b =  a 1 1    . 已知线性方程组 A x = b \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} A x = b   存在 2 个不同的解.  (I) 求 λ , a \lambda, a λ , a  ;  (II) 求方程组 A x = b \boldsymbol{A x}=\boldsymbol{b} Ax = b   的通解. (21) (本题满分 11 分)
(20) 解 (I )因为非齐次线性方程组 A x = b \boldsymbol{A x}=\boldsymbol{b} Ax = b   有两个不同的解, 即解不是唯一的, 所以系数行列式
∣ A ∣ = ∣ λ 1 1 0 λ − 1 0 1 1 λ ∣ = ( λ − 1 ) 2 ( λ + 1 ) = 0 , \displaystyle |\boldsymbol{A}|=\left|\begin{array}{ccc}\lambda & 1 & 1 \\0 & \lambda-1 & 0 \\1 & 1 & \lambda\end{array}\right|=(\lambda-1)^2(\lambda+1)=0, ∣ A ∣ =  λ 0 1  1 λ − 1 1  1 0 λ   = ( λ − 1 ) 2 ( λ + 1 ) = 0 ,  解得 λ = − 1 \lambda=-1 λ = − 1   或 1 (二重).  当 λ = 1 \lambda=1 λ = 1   时,方程组的增广矩阵( A : b ) = ( 1 1 1 a 0 0 0 1 1 1 1 1 ) → ( 1 1 1 1 0 0 0 1 0 0 0 a − 1 ) \displaystyle (\boldsymbol{A}: \boldsymbol{b})=\left(\begin{array}{lll:l}1 & 1 & 1 & a \\0 & 0 & 0 & 1 \\1 & 1 & 1 & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}1 & 1 & 1 & 1 \\0 & 0 & 0 & 1 \\0 & 0 & 0 & a-1\end{array}\right) ( A : b ) =  1 0 1  1 0 1  1 0 1  a 1 1   →  1 0 0  1 0 0  1 0 0  1 1 a − 1    的秩为 2, 系数矩阵 A \boldsymbol{A} A   的秩为 1, 方程组 A x = b \boldsymbol{A x}=\boldsymbol{b} Ax = b   无解, 故 λ = 1 \lambda=1 λ = 1   应舍去.  当 λ = − 1 \lambda=-1 λ = − 1   时,对方程组 A x = b A x=b A x = b   的增广矩阵作初等行变换:( A : b ) = ( − 1 1 1 a 0 − 2 0 1 1 1 − 1 1 ) → ( 1 1 − 1 1 0 2 0 − 1 0 0 0 a + 2 ) = B . \displaystyle (\boldsymbol{A}: \boldsymbol{b})=\left(\begin{array}{ccc:c}-1 & 1 & 1 & a \\0 & -2 & 0 & 1 \\1 & 1 & -1 & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}1 & 1 & -1 & 1 \\0 & 2 & 0 & -1 \\0 & 0 & 0 & a+2\end{array}\right)=\boldsymbol{B} . ( A : b ) =  − 1 0 1  1 − 2 1  1 0 − 1  a 1 1   →  1 0 0  1 2 0  − 1 0 0  1 − 1 a + 2   = B .  因为方程组 A x = b \boldsymbol{A x}=\boldsymbol{b} Ax = b   有解, 所以 a + 2 = 0 a+2=0 a + 2 = 0  , 即 a = − 2 a=-2 a = − 2  . 综上, λ = − 1 , a = − 2 \lambda=-1, a=-2 λ = − 1 , a = − 2  .  (II) 当 λ = − 1 , a = − 2 \lambda=-1, a=-2 λ = − 1 , a = − 2   时,继续对 (I) 中的矩阵 B B B   作初等行变换得B → ( 1 0 − 1 3 2 0 1 0 − 1 2 0 0 0 0 ) , \displaystyle \begin{aligned} \boldsymbol{B} \rightarrow\left(\begin{array}{ccc:c}1 & 0 & -1 & \frac{3}{2} \\0 & 1 & 0 & -\frac{1}{2} \\0 & 0 & 0 & 0\end{array}\right), \end{aligned} B →  1 0 0  0 1 0  − 1 0 0  2 3  − 2 1  0   ,  x = 1 2 ( 3 − 1 0 ) + k ( 1 0 1 ) , \displaystyle \begin{aligned} \boldsymbol{x}=\frac{1}{2}\left(\begin{array}{c}3 \\-1 \\0\end{array}\right)+k\left(\begin{array}{l}1 \\0 \\1\end{array}\right), \end{aligned} x = 2 1   3 − 1 0   + k  1 0 1   ,   于是方程组 A x = b \boldsymbol{A x}=\boldsymbol{b} Ax = b   的通解为 其中 k k k   为任意常数.  注 对克拉默法则要理解清楚, 若 ∣ A ∣ ≠ 0 |A| \neq 0 ∣ A ∣  = 0  , 则 A x = b A x=b A x = b   有唯一解; 若 ∣ A ∣ = 0 |A|=0 ∣ A ∣ = 0  , 则 A x = b A x=b A x = b   没有唯.一解, 此时 方程组可能无解,也可能有无穷多解.(21) 已知二次型 f ( x 1 , x 2 , x 3 ) = x T A x f\left(x_{1}, x_{2}, x_{3}\right)=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} f ( x 1  , x 2  , x 3  ) = x T A x   在正交变换 x = Q y \boldsymbol{x}=\boldsymbol{Q} \boldsymbol{y} x = Q y   下的标准形为 y 1 2 + y 2 2 y_{1}^{2}+y_{2}^{2} y 1 2  + y 2 2   , 且 Q \boldsymbol{Q} Q   的第三列为 ( 2 2 , 0 , 2 2 ) T \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)^{\mathrm{T}} ( 2 2   , 0 , 2 2   ) T  .  (I) 求矩阵 A \boldsymbol{A} A  ;  (II) 证明 A + E \boldsymbol{A}+\boldsymbol{E} A + E   为正定矩阵, 其中 E \boldsymbol{E} E   为 3 阶单位矩阵.
(21) ( I ) 解 因为二次型 x T A x \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A x} x T Ax   在正交变换 x = Q y \boldsymbol{x}=\boldsymbol{Q y} x = Qy   下的标准形为 y 1 2 + y 2 2 y_1^2+y_2^2 y 1 2  + y 2 2   , 所以其系数 1 , 1 , 0 1,1,0 1 , 1 , 0   就是矩阵 A \boldsymbol{A} A   的特征值, 即
Q − 1 A Q = Q T A Q = ( 1 1 0 ) , \displaystyle Q^{-1} \boldsymbol{A} Q=Q^{\mathrm{T}} \boldsymbol{A} Q=\left(\begin{array}{lll}1 & & \\& 1 & \\& & 0\end{array}\right), Q − 1 A Q = Q T A Q =  1  1  0   ,  且矩阵 Q Q Q   的第 3 列就是属于特征值 0 的特征向量.  设 ( x 1 , x 2 , x 3 ) T \left(x_1, x_2, x_3\right)^{\mathrm{T}} ( x 1  , x 2  , x 3  ) T   为 A \boldsymbol{A} A   的属于特征值 1 的特征向量. 由于实对称矩阵属于不同特征值的特征向量是正交 的,故有( 2 2 , 0 , 2 2 ) ( x 1 x 2 x 3 ) = 0 , \displaystyle \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)\left(\begin{array}{l}x_1 \\x_2 \\x_3\end{array}\right)=0, ( 2 2   , 0 , 2 2   )  x 1  x 2  x 3    = 0 ,  即 x 1 + x 3 = 0 x_1+x_3=0 x 1  + x 3  = 0  , 解得 ξ 1 = ( 2 2 , 0 , − 2 2 ) T , ξ 2 = ( 0 , 1 , 0 ) T \xi_1=\left(\frac{\sqrt{2}}{2}, 0,-\frac{\sqrt{2}}{2}\right)^{\mathrm{T}}, \xi_2=(0,1,0)^{\mathrm{T}} ξ 1  = ( 2 2   , 0 , − 2 2   ) T , ξ 2  = ( 0 , 1 , 0 ) T   即为属于特征值 1 的两个正交单位特征向贯. 以 ξ 1 , ξ 2 \xi_1, \xi_2 ξ 1  , ξ 2    分别为 Q Q Q   的第 1,2 列(或第 2,1 列)得到Q = ( 2 2 0 2 2 0 1 0 − 2 2 0 2 2 )  或  ( 0 2 2 2 2 1 0 0 0 − 2 2 2 2 ) , \displaystyle \begin{aligned} Q=\left(\begin{array}{ccc}\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\0 & 1 & 0 \\-\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\end{array}\right) \text { 或 }\left(\begin{array}{ccc}0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\1 & 0 & 0 \\0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right), \end{aligned} Q =  2 2   0 − 2 2    0 1 0  2 2   0 2 2       或    0 1 0  2 2   0 − 2 2    2 2   0 2 2     ,  Q ⊤ A Q = ( 1 1 0 ) . \displaystyle \begin{aligned} Q^{\top} A Q=\left(\begin{array}{lll}1 & & \\& 1 & \\& & 0\end{array}\right) . \end{aligned} Q ⊤ A Q =  1  1  0   .   从而得A = Q ( 1 1 0 ) Q T = 1 2 ( 1 0 − 1 0 2 0 − 1 0 1 ) \displaystyle \boldsymbol{A}=\boldsymbol{Q}\left(\begin{array}{lll}1 & & \\& 1 & \\& & 0\end{array}\right) \boldsymbol{Q}^{\mathrm{T}}=\frac{1}{2}\left(\begin{array}{ccc}1 & 0 & -1 \\0 & 2 & 0 \\-1 & 0 & 1\end{array}\right) A = Q  1  1  0   Q T = 2 1   1 0 − 1  0 2 0  − 1 0 1    (II) 证法 1 因 A \boldsymbol{A} A   的特征值为 1,1,0, 所以矩阵 A + E \boldsymbol{A}+\boldsymbol{E} A + E   的特征值为 2,2 , 1; 又 A + E \boldsymbol{A}+\boldsymbol{E} A + E   为实对称矩阵, 故 A + E \boldsymbol{A}+\boldsymbol{E} A + E   是正定矩阵 (实对称矩阵正定的一个充要条件是其所有特征值均为正数).  证法 2 分别计算 A + E \boldsymbol{A}+\boldsymbol{E} A + E   的顺序主子式: Δ 1 = 3 2 > 0 , Δ 2 = 3 > 0 , Δ 3 = 4 > 0 \Delta_1=\frac{3}{2}>0, \Delta_2=3>0, \Delta_3=4>0 Δ 1  = 2 3  > 0 , Δ 2  = 3 > 0 , Δ 3  = 4 > 0  , 故 A + E \boldsymbol{A}+\boldsymbol{E} A + E   正定.(22) (本题满分 11 分)  设二维随机变量 ( X , Y ) (X, Y) ( X , Y )   的概率密度为
f ( x , y ) = A e − 2 x 2 + 2 x y − y 2 , − ∞ < x < + ∞ , − ∞ < y < + ∞ , f(x, y)=A \mathrm{e}^{-2 x^{2}+2 x y-y^{2}},-\infty<x<+\infty,-\infty<y<+\infty, f ( x , y ) = A e − 2 x 2 + 2 x y − y 2 , − ∞ < x < + ∞ , − ∞ < y < + ∞ ,   求常数 A A A   及条件概率密度 f η X ( y ∣ x ) f_{\eta X}(y \mid x) f η X  ( y ∣ x )  .(22) 解
求常数 A A A  ,用规范性 性质:对于任何概率密度函数 f ( x , y ) f(x, y) f ( x , y )  ,其在所有可能的 x x x   和 y y y   上的积分等于 1。 应用到给定的 f ( x , y ) f(x, y) f ( x , y )  :对 f ( x , y ) = A e − 2 x 2 + 2 x y − y 2 f(x, y) = A e^{-2x^2 + 2xy - y^2} f ( x , y ) = A e − 2 x 2 + 2 x y − y 2   进行双重积分 ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x   d y = 将 f ( x , y ) 代入 ∫ − ∞ + ∞ ∫ − ∞ + ∞ A e − 2 x 2 + 2 x y − y 2   d x   d y \displaystyle \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \mathrm{d} x \mathrm{~d} y\xlongequal[]{\text{将}f(x,y)\text{代入}}\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A \mathrm{e}^{-2 x^2+2 x y-y^2} \mathrm{~d} x \mathrm{~d} y ∫ − ∞ + ∞  ∫ − ∞ + ∞  f ( x , y ) d x   d y 将 f ( x , y ) 代入  ∫ − ∞ + ∞  ∫ − ∞ + ∞  A e − 2 x 2 + 2 x y − y 2   d x   d y = 配方用高斯积分 ∫ − ∞ + ∞ ∫ − ∞ + ∞ A e − x 2 − ( y − x ) 2   d x   d y \displaystyle \begin{aligned}\xlongequal[]{\text{配方用高斯积分}}\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A \mathrm{e}^{-x^2-(y-x)^2} \mathrm{~d} x \mathrm{~d} y\end{aligned} 配方用高斯积分  ∫ − ∞ + ∞  ∫ − ∞ + ∞  A e − x 2 − ( y − x ) 2   d x   d y  = 对 y 积分,提出 x A ∫ − ∞ + ∞ e − x 2   d x ∫ − ∞ + ∞ e − ( y − x ) 2   d y \displaystyle \xlongequal[]{\text{对}y\text{积分,提出}x}A \int_{-\infty}^{+\infty} \mathrm{e}^{-x^2} \mathrm{~d} x \int_{-\infty}^{+\infty} \mathrm{e}^{-(y-x)^2} \mathrm{~d} y 对 y 积分,提出 x  A ∫ − ∞ + ∞  e − x 2   d x ∫ − ∞ + ∞  e − ( y − x ) 2   d y = d y = d x 线性凑微分 A ∫ − ∞ + ∞ e − x 2   d x ∫ − ∞ + ∞ e − ( y − x ) 2   d ( y − x ) \displaystyle \begin{aligned}\xlongequal[dy=dx]{\text{线性凑微分}}A \int_{-\infty}^{+\infty} \mathrm{e}^{-x^2} \mathrm{~d} x \int_{-\infty}^{+\infty} \mathrm{e}^{-(y-x)^2} \mathrm{~d}(y-x)\end{aligned} 线性凑微分 d y = d x  A ∫ − ∞ + ∞  e − x 2   d x ∫ − ∞ + ∞  e − ( y − x ) 2   d ( y − x )  = 令 t = y − x A ∫ − ∞ + ∞ e − x 2   d x ∫ − ∞ + ∞ e − t 2   d t = 高斯积分 ∫ − ∞ + ∞ e − t 2   d t π A π ,  \displaystyle \xlongequal[]{\text{令}t=y-x}A \int_{-\infty}^{+\infty} \mathrm{e}^{-x^2} \mathrm{~d} x \int_{-\infty}^{+\infty} \mathrm{e}^{-t^2} \mathrm{~d} t\xlongequal[]{\text{高斯积分}\int_{-\infty}^{+\infty} \mathrm{e}^{-t^2} \mathrm{~d} t\sqrt{\pi}}A \pi \text {, } 令 t = y − x  A ∫ − ∞ + ∞  e − x 2   d x ∫ − ∞ + ∞  e − t 2   d t 高斯积分 ∫ − ∞ + ∞  e − t 2   d t π   A π ,  结果:通过使用高斯积分 ∫ − ∞ + ∞ e − t 2 d t = π \displaystyle \int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi} ∫ − ∞ + ∞  e − t 2 d t = π   ,得到 A π = 1 → 移项 A = 1 π A \pi = 1\xrightarrow[]{\text{移项}}A = \frac{1}{\pi} A π = 1 移项  A = π 1     求条件概率密度 f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) = 联合 边缘 f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_X(x)}=\frac{\text{联合}}{\text{边缘}} f Y ∣ X  ( y ∣ x ) = f X  ( x ) f ( x , y )  = 边缘 联合  计算边缘概率密度 f X ( x ) f_X(x) f X  ( x )  :联合f ( x , y ) f(x, y) f ( x , y )  对y积分 公式:f X ( x ) = 积分区间 ∫ − ∞ + ∞ f ( x , y ) d y = 代入 f ( x , y ) 1 π ∫ − ∞ + ∞ e − 2 x 2 + 2 x y − y 2 d y \displaystyle f_X(x) \xlongequal[]{\text{积分区间}} \int_{-\infty}^{+\infty} f(x, y) dy\xlongequal[]{\text{代入}f(x,y)}\frac{1}{\pi} \int_{-\infty}^{+\infty} e^{-2x^2 + 2xy - y^2} dy f X  ( x ) 积分区间  ∫ − ∞ + ∞  f ( x , y ) d y 代入 f ( x , y )  π 1  ∫ − ∞ + ∞  e − 2 x 2 + 2 x y − y 2 d y  = 对 y 积分,提出常数 x 1 π e − x 2 ∫ − ∞ + ∞ e − ( y − x ) 2   d y = 高斯积分 1 π e − x 2 ⋅ π = 1 π e − x 2 \displaystyle \begin{aligned}\xlongequal[]{\text{对}y\text{积分,提出常数}x}\frac{1}{\pi} \mathrm{e}^{-x^2} \int_{-\infty}^{+\infty} \mathrm{e}^{-(y-x)^2} \mathrm{~d} y\xlongequal[]{\text{高斯积分}}\frac{1}{\pi} \mathrm{e}^{-x^2} \cdot \sqrt{\pi}=\frac{1}{\sqrt{\pi}} \mathrm{e}^{-x^2}\end{aligned} 对 y 积分,提出常数 x  π 1  e − x 2 ∫ − ∞ + ∞  e − ( y − x ) 2   d y 高斯积分  π 1  e − x 2 ⋅ π  = π  1  e − x 2  结果:f X ( x ) = 1 π e − x 2 f_X(x) = \frac{1}{\sqrt{\pi}} e^{-x^2} f X  ( x ) = π  1  e − x 2  。  求条件概率密度f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) f_{Y \mid X}(y \mid x) = \frac{f(x, y)}{f_X(x)} f Y ∣ X  ( y ∣ x ) = f X  ( x ) f ( x , y )  f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) = 代入 1 π e − 2 x 2 + 2 x y − y 2 1 π e − x 2 = 1 π e − x 2 + 2 x y − y 2 = 完全平方 1 π e − ( x − y ) 2 f_{Y \mid X}(y \mid x) = \frac{f(x, y)}{f_X(x)}\xlongequal[]{\text{代入}}\frac{\frac{1}{\pi} e^{-2x^2 + 2xy - y^2}}{\frac{1}{\sqrt{\pi}} e^{-x^2}}=\frac{1}{\sqrt{\pi}} \mathrm{e}^{-x^2+2 x y-y^2}\xlongequal[]{\text{完全平方}}\frac{1}{\sqrt{\pi}} \mathrm{e}^{-(x-y)^2} f Y ∣ X  ( y ∣ x ) = f X  ( x ) f ( x , y )  代入  π  1  e − x 2 π 1  e − 2 x 2 + 2 x y − y 2  = π  1  e − x 2 + 2 x y − y 2 完全平方  π  1  e − ( x − y ) 2 结果:f Y ∣ X ( y ∣ x ) = 1 π e − ( x − y ) 2 f_{Y \mid X}(y \mid x) = \frac{1}{\sqrt{\pi}} e^{-(x-y)^2} f Y ∣ X  ( y ∣ x ) = π  1  e − ( x − y ) 2    (23) (本题满分 11 分)  设总体 X X X   的概率分布为
X 1 2 3 P 1 − θ θ − θ 2 θ 2 \begin{array}{c|ccc} X & 1 & 2 & 3 \\ \hline P & 1-\theta & \theta-\theta^{2} & \theta^{2} \end{array}  X P  1 1 − θ  2 θ − θ 2  3 θ 2   
其中参数 \text{其中参数} 其中参数   θ ∈ ( 0 , 1 ) \theta \in(0,1) θ ∈ ( 0 , 1 )   末知 \text{末知} 末知  . 以 \text{以} 以   N i N_{i} N i    表示来自总体 \text{表示来自总体} 表示来自总体   X X X   的简单随机样本 \text{的简单随机样本} 的简单随机样本   (样本容量为 n n n   ) 中等于 \text{中等于} 中等于   i i i   的 \text{的} 的   个数 \text{个数} 个数   ( i = 1 , 2 , 3 ) (i=1,2,3) ( i = 1 , 2 , 3 )  . 试求常数 \text{试求常数} 试求常数   a 1 , a 2 , a 3 a_{1}, a_{2}, a_{3} a 1  , a 2  , a 3   , 使 \text{使} 使   T = ∑ i = 1 3 a i N i \displaystyle T=\sum_{i=1}^{3} a_{i} N_{i} T = i = 1 ∑ 3  a i  N i    为 \text{为} 为   θ \theta θ   的无偏估计量 \text{的无偏估计量} 的无偏估计量  , 并求 \text{并求} 并求   T T T   的方差 \text{的方差} 的方差  .
(23) 解 \text{解} 解   记 \text{记} 记   p 1 = 1 − θ , p 2 = θ − θ 2 , p 3 = θ 2 p_1=1-\theta, p_2=\theta-\theta^2, p_3=\theta^2 p 1  = 1 − θ , p 2  = θ − θ 2 , p 3  = θ 2  . 由于 \text{由于} 由于   N i ∼ B ( n , p i ) , i = 1 , 2 , 3 N_i \sim B\left(n, p_i\right), i=1,2,3 N i  ∼ B ( n , p i  ) , i = 1 , 2 , 3  , 故 \text{故} 故 
E N i = n p i , 于是 E N_i=n p_i \text {, }\text{于是} E N i  = n p i  ,  于是 E T = a 1 E N 1 + a 2 E N 2 + a 3 E N 3 = n [ a 1 ( 1 − θ ) + a 2 ( θ − θ 2 ) + a 3 θ 2 ] . 为使 E T=a_1 E N_1+a_2 E N_2+a_3 E N_3=n\left[a_1(1-\theta)+a_2\left(\theta-\theta^2\right)+a_3 \theta^2\right] .\text{为使} ET = a 1  E N 1  + a 2  E N 2  + a 3  E N 3  = n [ a 1  ( 1 − θ ) + a 2  ( θ − θ 2 ) + a 3  θ 2 ] . 为使   T T T   是 \text{是} 是   θ \theta θ   的无偏估计量 \text{的无偏估计量} 的无偏估计量  , 必有 \text{必有} 必有 n [ a 1 ( 1 − θ ) + a 2 ( θ − θ 2 ) + a 3 θ 2 ] = θ , 因此 n\left[a_1(1-\theta)+a_2\left(\theta-\theta^2\right)+a_3 \theta^2\right]=\theta,\text{因此} n [ a 1  ( 1 − θ ) + a 2  ( θ − θ 2 ) + a 3  θ 2 ] = θ , 因此 a 1 = 0 , a 2 − a 1 = 1 n , a 3 − a 2 = 0 , 由此得 a_1=0, a_2-a_1=\frac{1}{n}, a_3-a_2=0,\text{由此得} a 1  = 0 , a 2  − a 1  = n 1  , a 3  − a 2  = 0 , 由此得 a 1 = 0 , a 2 = a 3 = 1 n . 由于 a_1=0, a_2=a_3=\frac{1}{n} \text {. }\text{由于} a 1  = 0 , a 2  = a 3  = n 1  .  由于   N 1 + N 2 + N 3 = n N_1+N_2+N_3=n N 1  + N 2  + N 3  = n  , 故 \text{故} 故 T = 1 n ( N 2 + N 3 ) = 1 n ( n − N 1 ) = 1 − N 1 n . 注意到 T=\frac{1}{n}\left(N_2+N_3\right)=\frac{1}{n}\left(n-N_1\right)=1-\frac{N_1}{n} .\text{注意到} T = n 1  ( N 2  + N 3  ) = n 1  ( n − N 1  ) = 1 − n N 1   . 注意到   N 1 ∼ B ( n , 1 − θ ) N_1 \sim B(n, 1-\theta) N 1  ∼ B ( n , 1 − θ )  , 故 \text{故} 故 D T = 1 n 2 D N 1 = n ( 1 − θ ) θ n 2 = ( 1 − θ ) θ n . D T=\frac{1}{n^2} D N_1=\frac{n(1-\theta) \theta}{n^2}=\frac{(1-\theta) \theta}{n} . D T = n 2 1  D N 1  = n 2 n ( 1 − θ ) θ  = n ( 1 − θ ) θ  .