A∪B=B∪AA∩B=B∩AA \cup B=B \cup A \qquad A \cap B=B \cap A A∪B=B∪AA∩B=B∩A
A∪(B∪C)=(A∪B)∪CA \cup (B \cup C)=(A \cup B) \cup C A∪(B∪C)=(A∪B)∪C
A∩(B∩C)=(A∩B)∩CA \cap (B \cap C)=(A \cap B) \cap C A∩(B∩C)=(A∩B)∩C
A∪(B∩C)=(A∩B)∪(A∩C)A \cup (B \cap C)=(A \cap B) \cup (A \cap C) A∪(B∩C)=(A∩B)∪(A∩C)
A∩(B∪C)=(A∪B)∩(A∪C)A \cap (B \cup C)=(A \cup B) \cap (A \cup C) A∩(B∪C)=(A∪B)∩(A∪C)
交换律和结合律可适用于任意多个集合的情形,即当多个集合作并运算时,可以更改运算顺序,交运算也是如此。
至于分配律,可以写为
A∩(∪α∈IBα)=∪α∈I(A∩Bα)A \cap (\cup_{\alpha \in I}B_{\alpha})= \cup_{\alpha \in I}(A \cap B_{\alpha}) A∩(∪α∈IBα)=∪α∈I(A∩Bα)
A∪(∩α∈IBα)=∩α∈I(A∪Bα)A \cup (\cap_{\alpha \in I}B_{\alpha})= \cap_{\alpha \in I}(A \cup B_{\alpha}) A∪(∩α∈IBα)=∩α∈I(A∪Bα)
(∪α∈IAα)c=∩α∈IAαc(\cup_{\alpha \in I}A_{\alpha})^c=\cap_{\alpha \in I}A_{\alpha}^c (∪α∈IAα)c=∩α∈IAαc
(∩α∈IAα)c=∪α∈IAαc(\cap_{\alpha \in I}A_{\alpha})^c=\cup_{\alpha \in I}A_{\alpha}^c (∩α∈IAα)c=∪α∈IAαc